added lighting, stole a terrain generator and ported it.

master
MitchellHansen 8 years ago
parent e1080baab0
commit 4e96985104

@ -3,26 +3,160 @@
#include <SFML/System/Vector2.hpp> #include <SFML/System/Vector2.hpp>
#include <SFML/Graphics/Color.hpp> #include <SFML/Graphics/Color.hpp>
#include <random> #include <random>
#include <iostream>
#include <functional>
#include <cmath>
class Map { class Map {
public: public:
Map(sf::Vector3i dim) { Map(sf::Vector3i dim) {
dimensions = dim;
std::mt19937 gen;
std::uniform_real_distribution<double> dis(-1.0, 1.0);
auto f_rand = std::bind(dis, gen);
list = new char[dim.x * dim.y * dim.z]; list = new char[dim.x * dim.y * dim.z];
//for (int i = 0; i < dim.x * dim.y * dim.x; i++) {
// list[i] = 0; height_map = new double[dim.x * dim.y];
for (int i = 0; i < dim.x * dim.y; i++) {
height_map[i] = 0;
}
//int featuresize = 2;
//for (int y = 0; y < dim.y; y += featuresize)
// for (int x = 0; x < dim.x; x += featuresize) {
// double t = dis(gen);
// setSample(x, y, t); //IMPORTANT: frand() is a random function that returns a value between -1 and 1.
// }
//int samplesize = featuresize;
//double scale = 10.0;
//while (samplesize > 1) {
// DiamondSquare(samplesize, scale);
// samplesize /= 2;
// scale /= 2.0;
//} //}
for (int x = 0; x < dim.x / 10; x++) {
for (int y = 0; y < dim.y / 10; y++) {
for (int z = 0; z < dim.z; z++) {
if (rand() % 1000 < 1) //size of grid to generate, note this must be a
list[x + dim.x * (y + dim.z * z)] = rand() % 6; //value 2^n+1
int DATA_SIZE = dim.x + 1;
//an initial seed value for the corners of the data
double SEED = 50;
//seed the data
setSample(0, 0, SEED);
setSample(0, dim.y, SEED);
setSample(dim.x, 0, SEED);
setSample(dim.x, dim.y, SEED);
double h = 30.0;//the range (-h -> +h) for the average offset
//for the new value in range of h
//side length is distance of a single square side
//or distance of diagonal in diamond
for (int sideLength = DATA_SIZE - 1;
//side length must be >= 2 so we always have
//a new value (if its 1 we overwrite existing values
//on the last iteration)
sideLength >= 2;
//each iteration we are looking at smaller squares
//diamonds, and we decrease the variation of the offset
sideLength /= 2, h /= 2.0) {
//half the length of the side of a square
//or distance from diamond center to one corner
//(just to make calcs below a little clearer)
int halfSide = sideLength / 2;
//generate the new square values
for (int x = 0; x < DATA_SIZE - 1; x += sideLength) {
for (int y = 0; y < DATA_SIZE - 1; y += sideLength) {
//x, y is upper left corner of square
//calculate average of existing corners
double avg = sample(x, y) + //top left
sample(x + sideLength,y) +//top right
sample(x,y + sideLength) + //lower left
sample(x + sideLength,y + sideLength);//lower right
avg /= 4.0;
//center is average plus random offset
setSample(x + halfSide,y + halfSide,
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg + (f_rand() * 2 * h) - h);
}
}
//generate the diamond values
//since the diamonds are staggered we only move x
//by half side
//NOTE: if the data shouldn't wrap then x < DATA_SIZE
//to generate the far edge values
for (int x = 0; x < DATA_SIZE - 1; x += halfSide) {
//and y is x offset by half a side, but moved by
//the full side length
//NOTE: if the data shouldn't wrap then y < DATA_SIZE
//to generate the far edge values
for (int y = (x + halfSide) % sideLength; y < DATA_SIZE - 1; y += sideLength) {
//x, y is center of diamond
//note we must use mod and add DATA_SIZE for subtraction
//so that we can wrap around the array to find the corners
double avg =
sample((x - halfSide + DATA_SIZE) % DATA_SIZE,y) + //left of center
sample((x + halfSide) % DATA_SIZE,y) + //right of center
sample(x,(y + halfSide) % DATA_SIZE) + //below center
sample(x,(y - halfSide + DATA_SIZE) % DATA_SIZE); //above center
avg /= 4.0;
//new value = average plus random offset
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg = avg + (f_rand() * 2 * h) - h;
//update value for center of diamond
setSample(x,y, avg);
//wrap values on the edges, remove
//this and adjust loop condition above
//for non-wrapping values.
if (x == 0) setSample(DATA_SIZE - 1,y, avg);
if (y == 0) setSample(x, DATA_SIZE - 1, avg);
} }
} }
} }
dimensions = dim;
global_light = sf::Vector3f(0.2, 0.4, 1); for (int x = 0; x < dim.x; x++) {
for (int y = 0; y < dim.y; y++) {
if (height_map[x + y * dim.x] > 0) {
int z = height_map[x + y * dim.x];
list[x + dim.x * (y + dim.z * z)] = 5;
}
}
}
// for (int x = 0; x < dim.x / 10; x++) {
// for (int y = 0; y < dim.y / 10; y++) {
// for (int z = 0; z < dim.z; z++) {
// if (rand() % 1000 < 1)
// list[x + dim.x * (y + dim.z * z)] = rand() % 6;
// }
// }
// }
} }
~Map() { ~Map() {
@ -44,7 +178,73 @@ public:
protected: protected:
private: private:
double* height_map;
double sample(int x, int y) {
return height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x];
}
void setSample(int x, int y, double value) {
height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x] = value;
}
void sampleSquare(int x, int y, int size, double value) {
int hs = size / 2;
// a b
//
// x
//
// c d
double a = sample(x - hs, y - hs);
double b = sample(x + hs, y - hs);
double c = sample(x - hs, y + hs);
double d = sample(x + hs, y + hs);
setSample(x, y, ((a + b + c + d) / 4.0) + value);
}
void sampleDiamond(int x, int y, int size, double value) {
int hs = size / 2;
// c
//
//a x b
//
// d
double a = sample(x - hs, y);
double b = sample(x + hs, y);
double c = sample(x, y - hs);
double d = sample(x, y + hs);
setSample(x, y, ((a + b + c + d) / 4.0) + value);
}
void DiamondSquare(int stepsize, double scale) {
std::mt19937 generator;
std::uniform_real_distribution<double> uniform_distribution(-1.0, 1.0);
auto f_rand = std::bind(uniform_distribution, std::ref(generator));
int halfstep = stepsize / 2;
for (int y = halfstep; y < dimensions.y + halfstep; y += stepsize) {
for (int x = halfstep; x < dimensions.x + halfstep; x += stepsize) {
sampleSquare(x, y, stepsize, f_rand() * scale);
}
}
for (int y = 0; y < dimensions.y; y += stepsize) {
for (int x = 0; x < dimensions.x; x += stepsize) {
sampleDiamond(x + halfstep, y, stepsize, f_rand() * scale);
sampleDiamond(x, y + halfstep, stepsize, f_rand() * scale);
}
}
}
}; };

@ -1,3 +1,18 @@
float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
dot(
normalize(light),
normalize(fabs(convert_float3(mask)))
)
) / 2;
return input;
}
__kernel void min_kern( __kernel void min_kern(
global char* map, global char* map,
global int3* map_dim, global int3* map_dim,
@ -5,6 +20,8 @@ __kernel void min_kern(
global float3* projection_matrix, global float3* projection_matrix,
global float3* cam_dir, global float3* cam_dir,
global float3* cam_pos, global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image __write_only image2d_t image
){ ){
@ -26,43 +43,30 @@ __kernel void min_kern(
// Setup the voxel step based on what direction the ray is pointing // Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1}; int3 voxel_step = {1, 1, 1};
voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); voxel_step *= (ray_dir > 0) - (ray_dir < 0);
/*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0); voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0); voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/
// Setup the voxel coords from the camera origin // Setup the voxel coords from the camera origin
int3 voxel = { int3 voxel = convert_int3(*cam_pos);
floor(cam_pos->x),
floor(cam_pos->y),
floor(cam_pos->z)
};
// Delta T is the units a ray must travel along an axis in order to // Delta T is the units a ray must travel along an axis in order to
// traverse an integer split // traverse an integer split
float3 delta_t = { float3 delta_t = fabs(1.0f / ray_dir);
fabs(1.0f / ray_dir.x),
fabs(1.0f / ray_dir.y),
fabs(1.0f / ray_dir.z)
};
// Intersection T is the collection of the next intersection points // Intersection T is the collection of the next intersection points
// for all 3 axis XYZ. // for all 3 axis XYZ.
float3 intersection_t = { float3 intersection_t = delta_t;
delta_t.x,
delta_t.y,
delta_t.z
};
int2 randoms = { 3, 7 }; int2 randoms = { 3, 14 };
uint seed = randoms.x + id; uint seed = randoms.x + id;
uint t = seed ^ (seed << 11); uint t = seed ^ (seed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
int max_dist = 500 + result % 50; int max_dist = 500 + result % 50;
int dist = 0; int dist = 0;
int face = -1;
// X:0, Y:1, Z:2
int3 mask = { 0, 0, 0 }; int3 mask = { 0, 0, 0 };
@ -74,20 +78,16 @@ __kernel void min_kern(
intersection_t += delta_t * fabs(convert_float3(mask.xyz)); intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz; voxel.xyz += voxel_step.xyz * mask.xyz;
// If the ray went out of bounds // If the ray went out of bounds
int3 overshoot = voxel.xyz <= map_dim->xyz; int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0; int3 undershoot = voxel > 0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0){
write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1));
return; return;
} }
if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) { if (undershoot.z == 0) {
write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1)); write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0));
return; return;
} }
@ -95,8 +95,6 @@ __kernel void min_kern(
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z); int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
int voxel_data = map[index]; int voxel_data = map[index];
if (voxel_data != 0) { if (voxel_data != 0) {
switch (voxel_data) { switch (voxel_data) {
case 1: case 1:
@ -104,8 +102,6 @@ __kernel void min_kern(
return; return;
case 2: case 2:
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00)); write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
//if (id == 249000)
// printf("%i\n", voxel_data);
return; return;
case 3: case 3:
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00)); write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
@ -114,7 +110,8 @@ __kernel void min_kern(
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return; return;
case 5: case 5:
write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00)); //write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask));
return; return;
case 6: case 6:
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00)); write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
@ -125,6 +122,6 @@ __kernel void min_kern(
dist++; dist++;
} while (dist < max_dist); } while (dist < max_dist);
write_imagef(image, pixel, (float4)(.00, .00, .00, .00)); write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return; return;
} }

@ -35,9 +35,9 @@
const int WINDOW_X = 1000; const int WINDOW_X = 1000;
const int WINDOW_Y = 1000; const int WINDOW_Y = 1000;
const int MAP_X = 1000; const int MAP_X = 1024;
const int MAP_Y = 1000; const int MAP_Y = 1024;
const int MAP_Z = 1000; const int MAP_Z = 256;
float elap_time(){ float elap_time(){
static std::chrono::time_point<std::chrono::system_clock> start; static std::chrono::time_point<std::chrono::system_clock> start;
@ -157,11 +157,26 @@ int main() {
sf::Vector3f cam_pos(55, 50, 50); sf::Vector3f cam_pos(55, 50, 50);
cl_mem cam_pos_buff = clCreateBuffer( cl_mem cam_pos_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(float) * 4, &cam_pos, NULL sizeof(float) * 4, &cam_pos, NULL
); );
// {r, g, b, i, x, y, z, x', y', z'}
float light[] = { 0.4, 0.8, 0.1, 1, 50, 50, 50, 1.1, 0.4, 0.7};
cl_mem light_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float) * 10, light, NULL
);
int light_count = 1;
cl_mem light_cnt_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int), &light_count, NULL
);
unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4]; unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
@ -186,16 +201,14 @@ int main() {
if (c.assert(error, "clCreateFromGLTexture")) if (c.assert(error, "clCreateFromGLTexture"))
return -1; return -1;
c.store_buffer(map_buff, "map_buffer"); c.store_buffer(map_buff, "map_buffer");
c.store_buffer(dim_buff, "dim_buffer"); c.store_buffer(dim_buff, "dim_buffer");
c.store_buffer(res_buff, "res_buffer"); c.store_buffer(res_buff, "res_buffer");
c.store_buffer(view_matrix_buff, "view_matrix_buffer"); c.store_buffer(view_matrix_buff, "view_matrix_buffer");
c.store_buffer(cam_dir_buff, "cam_dir_buffer"); c.store_buffer(cam_dir_buff, "cam_dir_buffer");
c.store_buffer(cam_pos_buff, "cam_pos_buffer"); c.store_buffer(cam_pos_buff, "cam_pos_buffer");
c.store_buffer(light_buff, "light_buffer");
c.store_buffer(light_cnt_buff, "light_count_buffer");
c.store_buffer(image_buff, "image_buffer"); c.store_buffer(image_buff, "image_buffer");
c.set_kernel_arg("min_kern", 0, "map_buffer"); c.set_kernel_arg("min_kern", 0, "map_buffer");
@ -204,12 +217,12 @@ int main() {
c.set_kernel_arg("min_kern", 3, "view_matrix_buffer"); c.set_kernel_arg("min_kern", 3, "view_matrix_buffer");
c.set_kernel_arg("min_kern", 4, "cam_dir_buffer"); c.set_kernel_arg("min_kern", 4, "cam_dir_buffer");
c.set_kernel_arg("min_kern", 5, "cam_pos_buffer"); c.set_kernel_arg("min_kern", 5, "cam_pos_buffer");
c.set_kernel_arg("min_kern", 6, "image_buffer"); c.set_kernel_arg("min_kern", 6, "light_buffer");
c.set_kernel_arg("min_kern", 7, "light_count_buffer");
c.set_kernel_arg("min_kern", 8, "image_buffer");
const int size = WINDOW_X * WINDOW_Y; const int size = WINDOW_X * WINDOW_Y;
s.setTexture(t); s.setTexture(t);
// The step size in milliseconds between calls to Update() // The step size in milliseconds between calls to Update()

Loading…
Cancel
Save