@ -156,6 +156,7 @@ struct TraversalState get_oct_vox(
// push the root node to the parent stack
// push the root node to the parent stack
ts.parent_stack[0] = ts.current_descriptor ;
ts.parent_stack[0] = ts.current_descriptor ;
ts.parent_stack_index[0] = ts.current_descriptor_index ;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = setting ( OCTDIM ) ;
int dimension = setting ( OCTDIM ) ;
@ -175,14 +176,14 @@ struct TraversalState get_oct_vox(
while ( dimension > 1 ) {
while ( dimension > 1 ) {
// Do the logic steps to find which sub oct we step down into
// Do the logic steps to find which sub oct we step down into
uchar3 thing = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
uchar3 masks = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
convert_char3 ( position >= ( int3 ) ( dimension/2 ) + ts.oct_pos ) ) ;
convert_char3 ( position >= ( int3 ) ( dimension/2 ) + ts.oct_pos ) ) ;
// So we can be a little bit tricky here and increment our
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
// Adding 1 for X, 2 for Y, and 4 for Z
ts.idx_stack[ts.scale] = thing.x | thing.y | thing .z;
ts.idx_stack[ts.scale] = masks.x | masks.y | masks .z;
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
ts.oct_pos = ts.sub_oct_pos ;
ts.oct_pos = ts.sub_oct_pos ;
@ -319,7 +320,7 @@ __kernel void raycaster(
intersection_t += delta_t * -1 * convert_float3 ( isless ( intersection_t, 0 ) ) ;
intersection_t += delta_t * -1 * convert_float3 ( isless ( intersection_t, 0 ) ) ;
int distance_traveled = 0 ;
int distance_traveled = 0 ;
int max_distance = 2 0;
int max_distance = 8 0;
uint bounce_count = 0 ;
uint bounce_count = 0 ;
int3 face_mask = { 0 , 0 , 0 } ;
int3 face_mask = { 0 , 0 , 0 } ;
int voxel_data = 0 ;
int voxel_data = 0 ;
@ -353,10 +354,8 @@ __kernel void raycaster(
convert_float3 ( ( traversal_state.sub_oct_pos - voxel.xyz ) * traversal_state.resolution/2 ) ;
convert_float3 ( ( traversal_state.sub_oct_pos - voxel.xyz ) * traversal_state.resolution/2 ) ;
// Andrew Woo 's raycasting algo
// Andrew Woo 's raycasting algo
__attribute__ ( ( opencl_unroll_hint ( 1 ) ) ) ;
while ( distance_traveled < max_distance && bounce_count < 2 ) {
while ( distance_traveled < max_distance && bounce_count < 2 ) {
if ( setting ( OCTENABLED ) == 0 ) {
// True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
// True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
@ -371,7 +370,7 @@ __kernel void raycaster(
// Test for out of bounds contions, add fog
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz ;
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz ;
color_accumulator = mix ( fog_color, ( 1.0f,0.3f,0.3f,1.0f ) , 1.0f ) - max ( distance_traveled / 8 .0f, 0.0f ) ;
color_accumulator = mix ( fog_color, ( 1.0f,0.3f,0.3f,1.0f ) , 1.0f ) - max ( distance_traveled / 100 .0f, 0.0f ) ;
color_accumulator.w = 1.0f ;
color_accumulator.w = 1.0f ;
break ;
break ;
}
}
@ -379,16 +378,8 @@ __kernel void raycaster(
uchar prev_val = traversal_state.idx_stack[traversal_state.scale] ;
uchar prev_val = traversal_state.idx_stack[traversal_state.scale] ;
uchar this_face_mask = 0 ;
uchar this_face_mask = 0 ;
// Check the voxel face that we traversed
uchar3 tmp = select ( ( uchar3 ) ( 0 ) , ( uchar3 ) ( idx_set_x_mask,idx_set_y_mask,idx_set_z_mask ) , convert_uchar3 ( face_mask == ( 1 , 1 , 1 ) ) ) ;
if ( face_mask.x ) {
this_face_mask = tmp.x | tmp.y | tmp.z ;
this_face_mask = idx_set_x_mask ;
}
else if ( face_mask.y ) {
this_face_mask = idx_set_y_mask ;
}
else if ( face_mask.z ) {
this_face_mask = idx_set_z_mask ;
}
// and increment the idx in the idx stack
// and increment the idx in the idx stack
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
@ -397,17 +388,14 @@ __kernel void raycaster(
uchar mask_index = traversal_state.idx_stack[traversal_state.scale] ;
uchar mask_index = traversal_state.idx_stack[traversal_state.scale] ;
// Whether or not the next oct we want to enter in the current CD 's valid mask is 1 or 0
// Whether or not the next oct we want to enter in the current CD 's valid mask is 1 or 0
bool is_valid = false ;
// Check to see if the idx increased or decreased
// Check to see if the idx increased or decreased
// If it decreased, thus invalid
// If it decreased, thus invalid
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
if ( mask_index > prev_val ) // TODO: Rework this logic so we don 't have this bodgy if
bool is_valid = select ( false,
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
( bool ) ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index],
mask_index > prev_val ) ;
failsafe = 0 ;
while ( ( mask_index < prev_val | | !is_valid ) && traversal_state.scale >= 1 ) {
__attribute__ ( ( opencl_unroll_hint ( 1 ) ) ) ;
while ( mask_index < prev_val | | !is_valid ) {
// Clear and pop the idx stack
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0 ;
traversal_state.idx_stack[traversal_state.scale] = 0 ;
@ -421,9 +409,6 @@ __kernel void raycaster(
traversal_state.scale-- ;
traversal_state.scale-- ;
traversal_state.parent_stack_position-- ;
traversal_state.parent_stack_position-- ;
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale] ;
// Keep track of the 0th edge of our current oct, while keeping
// Keep track of the 0th edge of our current oct, while keeping
// track of the sub_oct we 're coming from
// track of the sub_oct we 're coming from
//traversal_state.sub_oct_pos = traversal_state.oct_pos ;
//traversal_state.sub_oct_pos = traversal_state.oct_pos ;
@ -438,15 +423,15 @@ __kernel void raycaster(
traversal_state.current_descriptor =
traversal_state.current_descriptor =
traversal_state.parent_stack[traversal_state.parent_stack_position] ;
traversal_state.parent_stack[traversal_state.parent_stack_position] ;
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale] ;
// Apply the face mask to the new idx for the while check
// Apply the face mask to the new idx for the while check
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
// Get the mask index of the new idx and check the valid status
// Get the mask index of the new idx and check the valid status
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
failsafe++ ;
if ( failsafe > 10 )
break ;
}
}
@ -454,14 +439,7 @@ __kernel void raycaster(
// valid oct at the leaf indicated by the current idx in the idx stack scale
// valid oct at the leaf indicated by the current idx in the idx stack scale
// While we haven 't bottomed out and the oct we 're looking at is valid
// While we haven 't bottomed out and the oct we 're looking at is valid
failsafe = 0 ;
while ( ( jump_power > 1 | | jump_power == 8 ) && is_valid ) {
if ( jump_power == 8 && is_valid )
failsafe = 5 ;
if ( jump_power > 1 && is_valid )
failsafe = 1 ;
__attribute__ ( ( opencl_unroll_hint ( 1 ) ) ) ;
for ( ;jump_power > 1 && is_valid;) {
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
@ -498,25 +476,19 @@ __kernel void raycaster(
// Unlike the single shot DFS, we inherited a valid idx from the upwards traversal. So now we must
// Unlike the single shot DFS, we inherited a valid idx from the upwards traversal. So now we must
// set the idx at the tail end of this for loop
// set the idx at the tail end of this for loop
// Do the logic steps to find which sub oct we step down into
// Do the logic steps to find which sub oct we step down into
if ( voxel.x >= ( jump_power ) + traversal_state.oct_pos.x ) {
// Set our voxel position to the ( 0 , 0 ) of the correct oct
traversal_state.oct_pos.x += ( jump_power ) ;
// Set the idx to represent the move
// Do the logic steps to find which sub oct we step down into
traversal_state.idx_stack[traversal_state.scale] | = idx_set_x_mask ;
uchar3 masks = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
}
convert_char3 ( voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ) ;
if ( voxel.y >= ( jump_power ) + traversal_state.oct_pos.y ) {
traversal_state.oct_pos.y += ( jump_power ) ;
// So we can be a little bit tricky here and increment our
traversal_state.idx_stack[traversal_state.scale] | = idx_set_y_mask ;
// array index that holds our masks as we build the idx.
}
// Adding 1 for X, 2 for Y, and 4 for Z
if ( voxel.z >= ( jump_power ) + traversal_state.oct_pos.z ) {
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z ;
traversal_state.oct_pos.z += ( jump_power ) ;
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
traversal_state.idx_stack[traversal_state.scale] | = idx_set_z_mask ;
traversal_state.oct_pos += select ( ( int3 ) ( 0 ) , ( int3 ) ( jump_power ) , voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ;
}
jump_power /= 2 ;
jump_power /= 2 ;
@ -526,29 +498,22 @@ __kernel void raycaster(
traversal_state.scale++ ;
traversal_state.scale++ ;
failsafe++ ;
if ( failsafe > 10 )
break ;
}
}
traversal_state.sub_oct_pos = traversal_state.oct_pos ;
traversal_state.sub_oct_pos = traversal_state.oct_pos ;
while ( true ) {
if ( voxel.x >= ( jump_power ) + traversal_state.oct_pos.x ) {
traversal_state.sub_oct_pos.x += ( jump_power ) ;
traversal_state.idx_stack[traversal_state.scale] | = idx_set_x_mask ;
}
if ( voxel.y >= ( jump_power ) + traversal_state.oct_pos.y ) {
traversal_state.sub_oct_pos.y += ( jump_power ) ;
traversal_state.idx_stack[traversal_state.scale] | = idx_set_y_mask ;
}
if ( voxel.z >= ( jump_power ) + traversal_state.oct_pos.z ) {
traversal_state.sub_oct_pos.z += ( jump_power ) ;
traversal_state.idx_stack[traversal_state.scale] | = idx_set_z_mask ;
}
break ;
uchar3 masks = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
}
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
convert_char3 ( voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ) ;
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z ;
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
traversal_state.sub_oct_pos += select ( ( int3 ) ( 0 ) , ( int3 ) ( jump_power ) , voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ;
traversal_state = traversal_state ;
// Add the delta for the jump power and the traversed face
// Add the delta for the jump power and the traversed face
intersection_t += delta_t * jump_power * fabs ( convert_float3 ( face_mask.xyz ) ) ;
intersection_t += delta_t * jump_power * fabs ( convert_float3 ( face_mask.xyz ) ) ;
@ -575,168 +540,168 @@ traversal_state.sub_oct_pos = traversal_state.oct_pos;
// break ;
// break ;
// }
// }
//voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
//voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
}
// =======================================================================
// =======================================================================
//
//
// =======================================================================
// =======================================================================
else {
// else {
//
// True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
// // True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
// face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
intersection_t += delta_t * convert_float3 ( face_mask.xyz ) ;
// intersection_t += delta_t * convert_float3 ( face_mask.xyz ) ;
voxel.xyz += voxel_step.xyz * face_mask.xyz ;
// voxel.xyz += voxel_step.xyz * face_mask.xyz ;
//
// Test for out of bounds contions, add fog
// // Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
// if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
// voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
// color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
color_accumulator.w *= 4 ;
// color_accumulator.w *= 4 ;
break ;
// break ;
}
// }
voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
// voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
}
// }
// =======================================================================
// =======================================================================
//
//
// =======================================================================
// =======================================================================
if ( voxel_data == 5 | | voxel_data == 6 ) {
// if ( voxel_data == 5 | | voxel_data == 6 ) {
//
// Determine where on the 2d plane the ray intersected
// // Determine where on the 2d plane the ray intersected
face_position = zeroed_float3 ;
// face_position = zeroed_float3 ;
tile_face_position = zeroed_float2 ;
// tile_face_position = zeroed_float2 ;
//
// Collect the sign of the face hit for ray redirection
// // Collect the sign of the face hit for ray redirection
sign = ( 1.0f, 1.0f, 1.0f ) ;
// sign = ( 1.0f, 1.0f, 1.0f ) ;
//
// First determine the percent of the way the ray is towards the next intersection_t
// // First determine the percent of the way the ray is towards the next intersection_t
// in relation to the xyz position on the plane
// // in relation to the xyz position on the plane
if ( face_mask.x == 1 ) {
// if ( face_mask.x == 1 ) {
//
sign.x *= -1.0 ;
// sign.x *= -1.0 ;
//
// the next intersection for this plane - the last intersection of the passed plane / delta of this plane
// // the next intersection for this plane - the last intersection of the passed plane / delta of this plane
// basically finds how far in on the other 2 axis we are when the ray traversed the plane
// // basically finds how far in on the other 2 axis we are when the ray traversed the plane
float z_percent = ( intersection_t.z - ( intersection_t.x - delta_t.x ) ) / delta_t.z ;
// float z_percent = ( intersection_t.z - ( intersection_t.x - delta_t.x ) ) / delta_t.z ;
float y_percent = ( intersection_t.y - ( intersection_t.x - delta_t.x ) ) / delta_t.y ;
// float y_percent = ( intersection_t.y - ( intersection_t.x - delta_t.x ) ) / delta_t.y ;
//
// Since we intersected face x, we know that we are at the face ( 1.0 )
// // Since we intersected face x, we know that we are at the face ( 1.0 )
// I think the 1.001f rendering bug is the ray thinking it 's within the voxel
// // I think the 1.001f rendering bug is the ray thinking it 's within the voxel
// even though it 's sitting on the very edge
// // even though it 's sitting on the very edge
face_position = ( float3 ) ( 1.00001f, y_percent, z_percent ) ;
// face_position = ( float3 ) ( 1.00001f, y_percent, z_percent ) ;
tile_face_position = face_position.yz ;
// tile_face_position = face_position.yz ;
}
// }
else if ( face_mask.y == 1 ) {
// else if ( face_mask.y == 1 ) {
//
sign.y *= -1.0 ;
// sign.y *= -1.0 ;
float x_percent = ( intersection_t.x - ( intersection_t.y - delta_t.y ) ) / delta_t.x ;
// float x_percent = ( intersection_t.x - ( intersection_t.y - delta_t.y ) ) / delta_t.x ;
float z_percent = ( intersection_t.z - ( intersection_t.y - delta_t.y ) ) / delta_t.z ;
// float z_percent = ( intersection_t.z - ( intersection_t.y - delta_t.y ) ) / delta_t.z ;
face_position = ( float3 ) ( x_percent, 1.00001f, z_percent ) ;
// face_position = ( float3 ) ( x_percent, 1.00001f, z_percent ) ;
tile_face_position = face_position.xz ;
// tile_face_position = face_position.xz ;
}
// }
//
else if ( face_mask.z == 1 ) {
// else if ( face_mask.z == 1 ) {
//
sign.z *= -1.0 ;
// sign.z *= -1.0 ;
float x_percent = ( intersection_t.x - ( intersection_t.z - delta_t.z ) ) / delta_t.x ;
// float x_percent = ( intersection_t.x - ( intersection_t.z - delta_t.z ) ) / delta_t.x ;
float y_percent = ( intersection_t.y - ( intersection_t.z - delta_t.z ) ) / delta_t.y ;
// float y_percent = ( intersection_t.y - ( intersection_t.z - delta_t.z ) ) / delta_t.y ;
face_position = ( float3 ) ( x_percent, y_percent, 1.00001f ) ;
// face_position = ( float3 ) ( x_percent, y_percent, 1.00001f ) ;
tile_face_position = face_position.xy ;
// tile_face_position = face_position.xy ;
//
}
// }
//
// Because the raycasting process is agnostic to the quadrant
// // Because the raycasting process is agnostic to the quadrant
// it 's working in, we need to transpose the sign over to the face positions.
// // it 's working in, we need to transpose the sign over to the face positions.
// If we don 't it will think that it is always working in the ( 1 , 1 , 1 ) quadrant
// // If we don 't it will think that it is always working in the ( 1 , 1 , 1 ) quadrant
// and will just "copy" the quadrant. This includes shadows as they use the face_position
// // and will just "copy" the quadrant. This includes shadows as they use the face_position
// in order to cast the intersection ray!!
// // in order to cast the intersection ray!!
//
face_position.x = select ( ( face_position.x ) , ( -face_position.x + 1.0f ) , ( int ) ( ray_dir.x > 0 ) ) ;
// face_position.x = select ( ( face_position.x ) , ( -face_position.x + 1.0f ) , ( int ) ( ray_dir.x > 0 ) ) ;
tile_face_position.x = select ( ( tile_face_position.x ) , ( -tile_face_position.x + 1.0f ) , ( int ) ( ray_dir.x < 0 ) ) ;
// tile_face_position.x = select ( ( tile_face_position.x ) , ( -tile_face_position.x + 1.0f ) , ( int ) ( ray_dir.x < 0 ) ) ;
//
if ( ray_dir.y > 0 ) {
// if ( ray_dir.y > 0 ) {
face_position.y = -face_position.y + 1 ;
// face_position.y = -face_position.y + 1 ;
} else {
// } else {
tile_face_position.x = 1.0 - tile_face_position.x ;
// tile_face_position.x = 1.0 - tile_face_position.x ;
//
// We run into the Hairy ball problem, so we need to define
// // We run into the Hairy ball problem, so we need to define
// a special case for the zmask
// // a special case for the zmask
if ( face_mask.z == 1 ) {
// if ( face_mask.z == 1 ) {
tile_face_position.x = 1.0f - tile_face_position.x ;
// tile_face_position.x = 1.0f - tile_face_position.x ;
tile_face_position.y = 1.0f - tile_face_position.y ;
// tile_face_position.y = 1.0f - tile_face_position.y ;
}
// }
}
// }
//
face_position.z = select ( ( face_position.z ) , ( -face_position.z + 1.0f ) , -1 * ( int ) ( ray_dir.z > 0 ) ) ;
// face_position.z = select ( ( face_position.z ) , ( -face_position.z + 1.0f ) , -1 * ( int ) ( ray_dir.z > 0 ) ) ;
tile_face_position.y = select ( ( tile_face_position.y ) , ( -tile_face_position.y + 1.0f ) , -1 * ( int ) ( ray_dir.z < 0 ) ) ;
// tile_face_position.y = select ( ( tile_face_position.y ) , ( -tile_face_position.y + 1.0f ) , -1 * ( int ) ( ray_dir.z < 0 ) ) ;
//
// Now we detect what type of of voxel we intersected and decide whether
// // Now we detect what type of of voxel we intersected and decide whether
// to bend the ray, send out a light intersection ray, or add texture color
// // to bend the ray, send out a light intersection ray, or add texture color
//
// TEXTURE HIT + SHADOW RAY REDIRECTION
// // TEXTURE HIT + SHADOW RAY REDIRECTION
if ( voxel_data == 5 && !shadow_ray ) {
// if ( voxel_data == 5 && !shadow_ray ) {
//
shadow_ray = true ;
// shadow_ray = true ;
voxel_color.xyz += ( float3 ) read_imagef (
// voxel_color.xyz += ( float3 ) read_imagef (
texture_atlas,
// texture_atlas,
convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
// convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
convert_int2 ( ( float2 ) ( 5 , 0 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
// convert_int2 ( ( float2 ) ( 5 , 0 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
) . xyz/2 ;
// ) . xyz/2 ;
//
color_accumulator = view_light (
// color_accumulator = view_light (
voxel_color,
// voxel_color,
( convert_float3 ( voxel ) + face_position ) - ( float3 ) ( lights[4], lights[5], lights[6] ) ,
// ( convert_float3 ( voxel ) + face_position ) - ( float3 ) ( lights[4], lights[5], lights[6] ) ,
( float4 ) ( lights[0], lights[1], lights[2], lights[3] ) ,
// ( float4 ) ( lights[0], lights[1], lights[2], lights[3] ) ,
( convert_float3 ( voxel ) + face_position ) - ( *cam_pos ) ,
// ( convert_float3 ( voxel ) + face_position ) - ( *cam_pos ) ,
face_mask * voxel_step
// face_mask * voxel_step
) ;
// ) ;
//
fog_distance = distance_traveled ;
// fog_distance = distance_traveled ;
max_distance = distance_traveled + fast_distance ( convert_float3 ( voxel ) , ( float3 ) ( lights[4], lights[5], lights[6] ) ) ;
// max_distance = distance_traveled + fast_distance ( convert_float3 ( voxel ) , ( float3 ) ( lights[4], lights[5], lights[6] ) ) ;
//
float3 hit_pos = convert_float3 ( voxel ) + face_position ;
// float3 hit_pos = convert_float3 ( voxel ) + face_position ;
ray_dir = normalize ( ( float3 ) ( lights[4], lights[5], lights[6] ) - hit_pos ) ;
// ray_dir = normalize ( ( float3 ) ( lights[4], lights[5], lights[6] ) - hit_pos ) ;
if ( any ( ray_dir == zeroed_float3 ) )
// if ( any ( ray_dir == zeroed_float3 ) )
return ;
// return ;
//
voxel -= voxel_step * face_mask ;
// voxel -= voxel_step * face_mask ;
voxel_step = ( -1 , -1 , -1 ) * ( ( ray_dir > 0 ) - ( ray_dir < 0 ) ) ;
// voxel_step = ( -1 , -1 , -1 ) * ( ( ray_dir > 0 ) - ( ray_dir < 0 ) ) ;
//
delta_t = fabs ( 1.0f / ray_dir ) ;
// delta_t = fabs ( 1.0f / ray_dir ) ;
intersection_t = delta_t * ( ( hit_pos ) - floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
// intersection_t = delta_t * ( ( hit_pos ) - floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
// intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
//
// REFLECTION
// // REFLECTION
} else if ( voxel_data == 6 && !shadow_ray ) {
// } else if ( voxel_data == 6 && !shadow_ray ) {
//
voxel_color.xyz += ( float3 ) read_imagef (
// voxel_color.xyz += ( float3 ) read_imagef (
texture_atlas,
// texture_atlas,
convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
// convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
convert_int2 ( ( float2 ) ( 3 , 4 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
// convert_int2 ( ( float2 ) ( 3 , 4 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
) . xyz/4 ;
// ) . xyz/4 ;
//
voxel_color.w -= 0.0f ;
// voxel_color.w -= 0.0f ;
//
float3 hit_pos = convert_float3 ( voxel ) + face_position ;
// float3 hit_pos = convert_float3 ( voxel ) + face_position ;
ray_dir *= sign ;
// ray_dir *= sign ;
if ( any ( ray_dir == zeroed_float3 ) )
// if ( any ( ray_dir == zeroed_float3 ) )
return ;
// return ;
//
voxel -= voxel_step * face_mask ;
// voxel -= voxel_step * face_mask ;
voxel_step = ( -1 , -1 , -1 ) * ( ray_dir > 0 ) - ( ray_dir < 0 ) ;
// voxel_step = ( -1 , -1 , -1 ) * ( ray_dir > 0 ) - ( ray_dir < 0 ) ;
//
delta_t = fabs ( 1.0f / ray_dir ) ;
// delta_t = fabs ( 1.0f / ray_dir ) ;
intersection_t = delta_t * ( ( hit_pos ) -floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
// intersection_t = delta_t * ( ( hit_pos ) -floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
// intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
//
bounce_count += 1 ;
// bounce_count += 1 ;
//
// SHADOW RAY HIT
// // SHADOW RAY HIT
} else {
// } else {
color_accumulator.w = 0.1f ;
// color_accumulator.w = 0.1f ;
break ;
// break ;
}
// }
}
// }
// At the bottom of the while loop, add one to the distance ticker
// At the bottom of the while loop, add one to the distance ticker
distance_traveled++ ;
distance_traveled++ ;