Would help if I actually added the files

master
8 years ago
parent fecf8dd8ee
commit 92aee8c4ca

@ -38,11 +38,12 @@ public:
int create_shared_context();
int create_command_queue();
int compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name);
int create_buffer(std::string buffer_name, cl_uint size, void* data);
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
int set_kernel_arg(std::string kernel_name, int index, std::string buffer_name);
int store_buffer(cl_mem, std::string buffer_name);
int run_kernel(std::string kernel_name, const int work_size);
bool assert(int error_code, std::string function_name);
cl_device_id getDeviceID();

@ -0,0 +1,45 @@
#pragma once
#include <SFML/System/Vector3.hpp>
#include <SFML/System/Vector2.hpp>
#include "util.hpp"
class Camera {
public:
enum DIRECTION { FORWARD, REARWARD, LEFT, RIGHT, UP, DOWN };
Camera();
Camera(sf::Vector3f position, sf::Vector2f direction);
~Camera();
int set_position(sf::Vector3f position);
int add_static_impulse(sf::Vector3f impulse);
int add_relative_impulse(DIRECTION direction);
int slew_camera(sf::Vector2f input);
int update();
void* get_direction_pointer();
void* get_position_pointer();
sf::Vector3f get_movement();
sf::Vector3f get_position();
sf::Vector2f get_direction();
private:
float friction_coefficient = 0.1;
float default_impulse = 1.0;
// 3D vector
sf::Vector3f movement;
// XYZ
sf::Vector3f position;
// These are spherical coords
sf::Vector2f direction;
};

@ -1,139 +0,0 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2016 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#ifndef GAME_VECTOR3_H
#define GAME_VECTOR3_H
template <typename T>
class Vector3
{
public:
// Default constructor
// Creates a Vector3(0, 0, 0).
Vector3();
// Construct the vector from its coordinates
Vector3(T X, T Y, T Z);
// Construct the vector from another type of vector
// This constructor doesn't replace the copy constructor,
// it's called only when U != T.
// A call to this constructor will fail to compile if U
// is not convertible to T.
template <typename U>
explicit Vector3(const Vector3<U>& vector);
// Member data
T x;
T y;
T z;
};
// Vector3
// Overload of unary operator -
// left Vector to negate
// Memberwise opposite of the vector
template <typename T>
Vector3<T> operator -(const Vector3<T>& left);
// Overload of binary operator +=
// This operator performs a memberwise addition of both vectors,
// and assigns the result to left.
// returns Reference to left
template <typename T>
Vector3<T>& operator +=(Vector3<T>& left, const Vector3<T>& right);
// Overload of binary operator -=
// This operator performs a memberwise subtraction of both vectors,
// and assigns the result to left.
// returns Reference to left
template <typename T>
Vector3<T>& operator -=(Vector3<T>& left, const Vector3<T>& right);
// Overload of binary operator +
// returns Memberwise addition of both vectors
template <typename T>
Vector3<T> operator +(const Vector3<T>& left, const Vector3<T>& right);
// Overload of binary operator -
// returns Memberwise subtraction of both vectors
template <typename T>
Vector3<T> operator -(const Vector3<T>& left, const Vector3<T>& right);
// Overload of binary operator *
// returns Memberwise multiplication by right
template <typename T>
Vector3<T> operator *(const Vector3<T>& left, T right);
// Overload of binary operator *
// returns Memberwise multiplication by left
template <typename T>
Vector3<T> operator *(T left, const Vector3<T>& right);
// Overload of binary operator *=
// This operator performs a memberwise multiplication by right,
// and assigns the result to left.
// returns Reference to left
template <typename T>
Vector3<T>& operator *=(Vector3<T>& left, T right);
// Overload of binary operator /
// returns Memberwise division by right
template <typename T>
Vector3<T> operator /(const Vector3<T>& left, T right);
// Overload of binary operator /=
// This operator performs a memberwise division by right,
// and assigns the result to left.
// returns Reference to left
template <typename T>
Vector3<T>& operator /=(Vector3<T>& left, T right);
// Overload of binary operator ==
// This operator compares strict equality between two vectors.
// returns True if left is equal to right
template <typename T>
bool operator ==(const Vector3<T>& left, const Vector3<T>& right);
// Overload of binary operator !=
// This operator compares strict difference between two vectors.
// returns True if left is not equal to right
template <typename T>
bool operator !=(const Vector3<T>& left, const Vector3<T>& right);
#include <SFML/System/Vector3.inl>
// Define the most common types
typedef Vector3<int> Vector3i;
typedef Vector3<float> Vector3f;
#endif

@ -0,0 +1,474 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2016 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#ifndef SFML_VECTOR4_H
#define SFML_VECTOR4_H
namespace sf {
////////////////////////////////////////////////////////////
/// \brief Utility template class for manipulating
/// 2-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector4 {
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates a Vector4(0, 0).
///
////////////////////////////////////////////////////////////
Vector4();
////////////////////////////////////////////////////////////
/// \brief Construct the vector from its coordinates
///
/// \param X X coordinate
/// \param Y Y coordinate
///
////////////////////////////////////////////////////////////
Vector4(T X, T Y, T Z, T W);
////////////////////////////////////////////////////////////
/// \brief Construct the vector from another type of vector
///
/// This constructor doesn't replace the copy constructor,
/// it's called only when U != T.
/// A call to this constructor will fail to compile if U
/// is not convertible to T.
///
/// \param vector Vector to convert
///
////////////////////////////////////////////////////////////
template <typename U>
explicit Vector4(const Vector4<U>& vector);
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x; ///< X coordinate of the vector
T y; ///< Y coordinate of the vector
T z; ///< Z coordinate of the vector
T w; ///< W coordinate of the vector
};
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of unary operator -
///
/// \param right Vector to negate
///
/// \return Memberwise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator -(const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator +=
///
/// This operator performs a memberwise addition of both vectors,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator +=(Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator -=
///
/// This operator performs a memberwise subtraction of both vectors,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator -=(Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator +
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Memberwise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator +(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator -
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Memberwise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator -(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise multiplication by \a right
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator *(const Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *
///
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Memberwise multiplication by \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator *(T left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *=
///
/// This operator performs a memberwise multiplication by \a right,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator *=(Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator /
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise division by \a right
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator /(const Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator /=
///
/// This operator performs a memberwise division by \a right,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator /=(Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator ==
///
/// This operator compares strict equality between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is equal to \a right
///
////////////////////////////////////////////////////////////
template <typename T>
bool operator ==(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator !=
///
/// This operator compares strict difference between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is not equal to \a right
///
////////////////////////////////////////////////////////////
template <typename T>
bool operator !=(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>::Vector4() :
x(0),
y(0),
z(0),
w(0){
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>::Vector4(T X, T Y, T Z, T W) :
x(X),
y(Y),
z(Z),
w(W) {
}
////////////////////////////////////////////////////////////
template <typename T>
template <typename U>
inline Vector4<T>::Vector4(const Vector4<U>& vector) :
x(static_cast<T>(vector.x)),
y(static_cast<T>(vector.y)),
z(static_cast<T>(vector.z)),
w(static_cast<T>(vector.w)) {
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator -(const Vector4<T>& right) {
return Vector4<T>(
-right.x,
-right.y,
-right.z,
-right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator +=(Vector4<T>& left, const Vector4<T>& right) {
left.x += right.x;
left.y += right.y;
left.z += right.z;
left.w += right.w;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator -=(Vector4<T>& left, const Vector4<T>& right) {
left.x -= right.x;
left.y -= right.y;
left.z -= right.z;
left.w -= right.w;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator +(const Vector4<T>& left, const Vector4<T>& right) {
return Vector4<T>(
left.x + right.x,
left.y + right.y,
left.z + right.z,
left.w + right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator -(const Vector4<T>& left, const Vector4<T>& right) {
return Vector4<T>(
left.x - right.x,
left.y - right.y,
left.z - right.z,
left.w - right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator *(const Vector4<T>& left, T right) {
return Vector4<T>(
left.x * right,
left.y * right,
left.z * right,
left.w * right
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator *(T left, const Vector4<T>& right) {
return Vector4<T>(
right.x * left,
right.y * left,
right.z * left,
right.w * left
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator *=(Vector4<T>& left, T right) {
left.x *= right;
left.y *= right;
left.z *= right;
left.w *= right;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator /(const Vector4<T>& left, T right) {
return Vector4<T>(
left.x / right,
left.y / right,
left.z / right,
left.w / right
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator /=(Vector4<T>& left, T right) {
left.x /= right;
left.y /= right;
left.z /= right;
left.w /= right;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline bool operator ==(const Vector4<T>& left, const Vector4<T>& right) {
return
(left.x == right.x) &&
(left.y == right.y) &&
(left.z == right.z) &&
(left.w == right.w);;
}
////////////////////////////////////////////////////////////
template <typename T>
inline bool operator !=(const Vector4<T>& left, const Vector4<T>& right) {
return
(left.x != right.x) ||
(left.y != right.y) ||
(left.z != right.z) ||
(left.w != right.w);
}
// Define the most common types
typedef Vector4<int> Vector4i;
typedef Vector4<unsigned int> Vector4u;
typedef Vector4<float> Vector4f;
} // namespace sf
#endif // SFML_Vector4_HPP
////////////////////////////////////////////////////////////
/// \class sf::Vector4
/// \ingroup system
///
/// sf::Vector4 is a simple class that defines a mathematical
/// vector with two coordinates (x and y). It can be used to
/// represent anything that has two dimensions: a size, a point,
/// a velocity, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
///
/// You generally don't have to care about the templated form (sf::Vector4<T>),
/// the most common specializations have special typedefs:
/// \li sf::Vector4<float> is sf::Vector4f
/// \li sf::Vector4<int> is sf::Vector4i
/// \li sf::Vector4<unsigned int> is sf::Vector4u
///
/// The sf::Vector4 class has a small and simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()) and it
/// contains no mathematical function like dot product, cross product, length, etc.
///
/// Usage example:
/// \code
/// sf::Vector4f v1(16.5f, 24.f);
/// v1.x = 18.2f;
/// float y = v1.y;
///
/// sf::Vector4f v2 = v1 * 5.f;
/// sf::Vector4
/// v3 = v1 + v2;
///
/// bool different = (v2 != v3);
/// \endcode
///
/// Note: for 3-dimensional vectors, see sf::Vector3.
///
////////////////////////////////////////////////////////////

@ -40,6 +40,16 @@ private:
};
inline sf::Vector3f SphereToCart(sf::Vector2f i) {
auto r = sf::Vector3f(
(1 * sin(i.y) * cos(i.x)),
(1 * sin(i.y) * sin(i.x)),
(1 * cos(i.y))
);
return r;
};
inline sf::Vector3f SphereToCart(sf::Vector3f i) {
auto r = sf::Vector3f(

@ -18,7 +18,7 @@ __kernel void min_kern(
global int3* map_dim,
global int2* resolution,
global float3* projection_matrix,
global float3* cam_dir,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
@ -26,18 +26,18 @@ __kernel void min_kern(
){
size_t id = get_global_id(0);
int2 pixel = {id % resolution->x, id / resolution->x};
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
int2 pixel = {id % (*resolution).x, id / (*resolution).x};
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
ray_dir = (float3)(
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
ray_dir.y,
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
);
ray_dir = (float3)(
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z
);
@ -92,7 +92,7 @@ __kernel void min_kern(
}
// If we hit a voxel
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * voxel.z);
int voxel_data = map[index];
if (voxel_data != 0) {

@ -233,6 +233,38 @@ int CL_Wrapper::set_kernel_arg(
}
int CL_Wrapper::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) {
cl_mem buff = clCreateBuffer(
getContext(), flags,
size, data, &error
);
if (assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int CL_Wrapper::create_buffer(std::string buffer_name, cl_uint size, void* data) {
cl_mem buff = clCreateBuffer(
getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
size, data, &error
);
if (assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int CL_Wrapper::store_buffer(cl_mem buffer, std::string buffer_name){
buffer_map.emplace(std::make_pair(buffer_name, buffer));
return 1;

@ -0,0 +1,67 @@
#include "Camera.h"
Camera::Camera() {
}
Camera::Camera(sf::Vector3f position, sf::Vector2f direction) :
position(position), direction(direction)
{
}
Camera::~Camera() {
}
int Camera::set_position(sf::Vector3f position) {
this->position = position;
return 1;
}
int Camera::add_static_impulse(sf::Vector3f impulse) {
movement += impulse;
return 1;
}
int Camera::add_relative_impulse(DIRECTION impulse_direction) {
SphereToCart(direction);
return 1;
}
int Camera::slew_camera(sf::Vector2f input) {
direction -= input;
return 1;
}
int Camera::update() {
position += movement;
movement *= friction_coefficient;
return 1;
}
void* Camera::get_direction_pointer() {
return &direction;
}
void* Camera::get_position_pointer() {
return &position;
}
sf::Vector3f Camera::get_movement() {
return movement;
}
sf::Vector3f Camera::get_position() {
return position;
}
sf::Vector2f Camera::get_direction() {
return direction;
}

@ -1,5 +0,0 @@
//
// Created by Mitchell Hansen on 8/7/16.
//
#include "Vector3.h"

@ -31,9 +31,12 @@
#include "util.hpp"
#include "RayCaster.h"
#include "CL_Wrapper.h"
#include "Vector4.hpp"
#include <Camera.h>
const int WINDOW_X = 1000;
const int WINDOW_Y = 1000;
const int WORK_SIZE = WINDOW_X * WINDOW_Y;
const int MAP_X = 1024;
const int MAP_Y = 1024;
@ -65,9 +68,7 @@ int main() {
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
sf::Sprite s;
sf::Texture t;
// Setup CL, instantiate and pass in values to the kernel
CL_Wrapper c;
query_platform_devices();
c.acquire_platform_and_device();
@ -82,35 +83,21 @@ int main() {
std::cout << "map...";
sf::Vector3i map_dim(MAP_X, MAP_Y, MAP_Z);
Map* map = new Map(map_dim);
std::cout << "done...";
map->setVoxel(sf::Vector3i(77, 50, 85), 5);
cl_mem map_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(char) * map_dim.x * map_dim.y * map_dim.z, map->list, NULL
);
cl_mem dim_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int) * 3, &map_dim, NULL
);
c.create_buffer("map_buffer", sizeof(char) * map_dim.x * map_dim.y * map_dim.z, map->list);
c.create_buffer("dim_buffer", sizeof(int) * 3, &map_dim);
sf::Vector2i view_res(WINDOW_X, WINDOW_Y);
cl_mem res_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int) * 2, &view_res, NULL
);
c.create_buffer("res_buffer", sizeof(int) * 2, &view_res);
double y_increment_radians = DegreesToRadians(50.0 / view_res.y);
double x_increment_radians = DegreesToRadians(80.0 / view_res.x);
// SFML 2.4 has Vector4 datatypes.......
std::cout << "view matrix...";
float* view_matrix = new float[WINDOW_X * WINDOW_Y * 4];
sf::Vector4f* view_matrix = new sf::Vector4f[WINDOW_X * WINDOW_Y * 4];
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
@ -133,51 +120,34 @@ int main() {
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
ray = Normalize(ray);
view_matrix[index * 4 + 0] = ray.x;
view_matrix[index * 4 + 1] = ray.y;
view_matrix[index * 4 + 2] = ray.z;
view_matrix[index * 4 + 3] = 0;
}
}
std::cout << "done\n";
int ind = 367;
printf("%i === %f, %f, %f\n", ind, view_matrix[ind * 4 + 0], view_matrix[ind * 4 + 1], view_matrix[ind * 4 + 2]);
cl_mem view_matrix_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float) * 3 * view_res.x * view_res.y, view_matrix, NULL
view_matrix[index] = sf::Vector4f(
ray.x,
ray.y,
ray.z,
0
);
}
}
sf::Vector3f cam_dir(1.0f, 0.0f, 1.00f);
c.create_buffer("view_matrix_buffer", sizeof(float) * 4 * view_res.x * view_res.y, view_matrix);
cl_mem cam_dir_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(float) * 4, &cam_dir, NULL
Camera camera(
sf::Vector3f(55, 50, 50),
sf::Vector2f(0.0f, 1.00f)
);
sf::Vector3f cam_pos(55, 50, 50);
cl_mem cam_pos_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(float) * 4, &cam_pos, NULL
);
c.create_buffer("cam_dir_buffer", sizeof(float) * 4, camera.get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
c.create_buffer("cam_pos_buffer", sizeof(float) * 4, camera.get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
// {r, g, b, i, x, y, z, x', y', z'}
float light[] = { 0.4, 0.8, 0.1, 1, 50, 50, 50, 1.1, 0.4, 0.7};
cl_mem light_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float) * 10, light, NULL
);
c.create_buffer("light_buffer", sizeof(float) * 10, light);
int light_count = 1;
c.create_buffer("light_count_buffer", sizeof(int), &light_count);
cl_mem light_cnt_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int), &light_count, NULL
);
// The drawing canvas
unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
for (int i = 0; i < WINDOW_X * WINDOW_Y * 4; i += 4) {
@ -188,12 +158,11 @@ int main() {
pixel_array[i + 3] = 100; // A?
}
sf::Texture t;
t.create(WINDOW_X, WINDOW_Y);
t.update(pixel_array);
int error;
cl_mem image_buff = clCreateFromGLTexture(
c.getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D,
0, t.getNativeHandle(), &error);
@ -201,14 +170,6 @@ int main() {
if (c.assert(error, "clCreateFromGLTexture"))
return -1;
c.store_buffer(map_buff, "map_buffer");
c.store_buffer(dim_buff, "dim_buffer");
c.store_buffer(res_buff, "res_buffer");
c.store_buffer(view_matrix_buff, "view_matrix_buffer");
c.store_buffer(cam_dir_buff, "cam_dir_buffer");
c.store_buffer(cam_pos_buff, "cam_pos_buffer");
c.store_buffer(light_buff, "light_buffer");
c.store_buffer(light_cnt_buff, "light_count_buffer");
c.store_buffer(image_buff, "image_buffer");
c.set_kernel_arg("min_kern", 0, "map_buffer");
@ -221,9 +182,9 @@ int main() {
c.set_kernel_arg("min_kern", 7, "light_count_buffer");
c.set_kernel_arg("min_kern", 8, "image_buffer");
const int size = WINDOW_X * WINDOW_Y;
sf::Sprite s;
s.setTexture(t);
s.setPosition(0, 0);
// The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS)
@ -258,6 +219,8 @@ int main() {
sf::Vector2i fixed(window.getSize());
bool mouse_enabled = true;
sf::Vector3f cam_mov_vec;
while (window.isOpen()) {
// Poll for events from the user
@ -299,18 +262,8 @@ int main() {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) {
cam_vec.x = -1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) {
cam_dir.z = -0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right)) {
cam_vec.z = +0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Down)) {
cam_vec.y = +0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up)) {
cam_vec.y = -0.1f;
}
camera.add_static_impulse(cam_vec);
if (mouse_enabled) {
deltas = fixed - sf::Mouse::getPosition();
@ -318,16 +271,12 @@ int main() {
// Mouse movement
sf::Mouse::setPosition(fixed);
cam_dir.y -= deltas.y / 300.0f;
cam_dir.z -= deltas.x / 300.0f;
camera.slew_camera(sf::Vector2f(
deltas.y / 300.0f,
deltas.x / 300.0f
));
}
}
cam_pos.x += cam_vec.x / 1.0;
cam_pos.y += cam_vec.y / 1.0;
cam_pos.z += cam_vec.z / 1.0;
std::cout << cam_vec.x << " : " << cam_vec.y << " : " << cam_vec.z << std::endl;
// Time keeping
elapsed_time = elap_time();
@ -339,32 +288,20 @@ int main() {
while ((accumulator_time - step_size) >= step_size) {
accumulator_time -= step_size;
// Update cycle
}
// Fps cycle
// map->moveLight(sf::Vector2f(0.3, 0));
window.clear(sf::Color::Black);
// Cast the rays and get the image
//sf::Color* pixel_colors = ray_caster.CastRays(cam_dir, cam_pos);
// Cast it to an array of Uint8's
//auto out = (sf::Uint8*)pixel_colors;
//window_texture.update(out);
//window_sprite.setTexture(window_texture);
//window.draw(window_sprite);
// Give the frame counter the frame time and draw the average frame time
// ==== DELTA TIME LOCKED ====
camera.update();
}
// ==== FPS LOCKED ====
// Run the raycast
error = clEnqueueAcquireGLObjects(c.getCommandQueue(), 1, &image_buff, 0, 0, 0);
if (c.assert(error, "clEnqueueAcquireGLObjects"))
return -1;
c.run_kernel("min_kern", size);
c.run_kernel("min_kern", WORK_SIZE);
clFinish(c.getCommandQueue());
@ -372,14 +309,19 @@ int main() {
if (c.assert(error, "clEnqueueReleaseGLObjects"))
return -1;
s.setPosition(0, 0);
// ==== RENDER ====
window.clear(sf::Color::Black);
window.draw(s);
// Give the frame counter the frame time and draw the average frame time
fps.frame(delta_time);
fps.draw(&window);
window.display();
//std::cin.get();
}
return 0;
}

Loading…
Cancel
Save