Trying to get the position on the face where the rays intersect the voxel. Some promising first results.

master
MitchellHansen 8 years ago
parent abec38e7c7
commit a812fba43c

@ -1,5 +1,5 @@
// Naive incident ray light
float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
@ -13,6 +13,45 @@ float4 white_light(float4 input, float3 light, int3 mask) {
}
// Phong + diffuse lighting function for g
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
in_color += diffuse * 0.5;
if (dot(light, normalize(convert_float3(mask))) > 0.0)
{
float3 halfwayVector = normalize(normalize(light) + normalize(view));
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
in_color += pow(specTmp, 1.0f) * 0.1;
}
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
//float spec = pow(max(dot(normalize(convert_float3(mask)), halfwayDir), 0.0f), 32.0f);
in_color += 0.02;
return in_color;
}
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
*seed = ((*seed) * a) % m;
return(*seed);
}
// =================================== Boolean ray intersection ============================
// =========================================================================================
bool cast_light_intersection_ray(
global char* map,
global int3* map_dim,
@ -33,9 +72,9 @@ bool cast_light_intersection_ray(
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
float3 offset = ((ray_pos) - floor(ray_pos)) * convert_float3(voxel_step);
float3 offset = ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
@ -62,13 +101,7 @@ bool cast_light_intersection_ray(
// Andrew Woo's raycasting algo
do {
// If we hit a voxel
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
int voxel_data = map[index];
if (voxel_data != 0) {
return true;
}
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
@ -86,7 +119,13 @@ bool cast_light_intersection_ray(
return false;
}
// If we hit a voxel
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
int voxel_data = map[index];
if (voxel_data != 0) {
return true;
}
dist++;
@ -95,105 +134,94 @@ bool cast_light_intersection_ray(
return false;
}
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
in_color += diffuse * 0.5;
// =================================== float4 of intersected voxel ============================
// ============================================================================================
if (dot(light, normalize(convert_float3(mask))) > 0.0)
{
float3 halfwayVector = normalize(normalize(light) + normalize(view));
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
in_color += pow(specTmp, 1.0f) * 0.01;
}
float4 cast_color_ray(
global char* map,
global int3* map_dim,
float3 ray_dir,
float3 ray_pos,
global float* lights,
global int* light_count
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
//float spec = pow(max(dot(normalize(convert_float3(mask)), halfwayDir), 0.0f), 32.0f);
in_color += 0.02;
return in_color;
}
) {
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = { 1, 1, 1 };
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(ray_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
float3 offset = ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t *offset;
// for negative values, wrap around the delta_t, rather not do this
// component wise, but it doesn't appear to want to work
if (intersection_t.x < 0) {
intersection_t.x += delta_t.x;
}
if (intersection_t.y < 0) {
intersection_t.y += delta_t.y;
}
if (intersection_t.z < 0) {
intersection_t.z += delta_t.z;
}
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
// Hard cut-off for how far the ray can travel
int max_dist = 800;
int dist = 0;
float4 cast_light_rays(
float3 eye_direction,
float3 ray_origin,
float4 voxel_color,
float3 voxel_normal,
global float* lights,
global int* light_count) {
int3 face_mask = { 0, 0, 0 };
// set the ray origin to be where the initial ray intersected the voxel
// which side z, and the x and y position
// Andrew Woo's raycasting algo
do {
float ambient_constant = 0.5;
float intensity = 0;
// If we hit a voxel
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
int voxel_data = map[index];
for (int i = 0; i < *light_count; i++) {
if (voxel_data != 0) {
return true;
}
float distance = sqrt(
pow(lights[10 * i + 4] - ray_origin.x, 2) +
pow(lights[10 * i + 5] - ray_origin.y, 2) +
pow(lights[10 * i + 6] - ray_origin.z, 2));
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
if (distance > 50)
continue;
// If the ray went out of bounds
int3 overshoot = voxel < *map_dim;
int3 undershoot = voxel >= 0;
float3 light_direction = (lights[10 * i + 7], lights[10 * i + 8], lights[10 * i + 9]);
float c = 10.0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
return false;
}
if (undershoot.z == 0) {
return false;
}
//if (dot(light_direction, voxel_normal) > 0.0) {
float3 halfwayVector = normalize(light_direction + eye_direction);
float dot_prod = dot(voxel_normal, halfwayVector);
float specTmp = max((float)dot_prod, 0.0f);
intensity += pow(specTmp, c);
//}
}
if (get_global_id(0) == 1037760) {
//printf("%f", intensity);
voxel_color = (float4)(1.0, 1.0, 1.0, 1.0);
return voxel_color;
}
voxel_color.w *= intensity;
voxel_color.w += ambient_constant;
return voxel_color;
// for every light
//
// check if the light is within falloff distance
// every unit, light halfs
//
// if it is, cast a ray to that light and check for collisions.
// if ray exits voxel volume, assume unobstructed
//
// if ray intersects a voxel, dont influence the voxel color
//
// if it does
}
dist++;
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
} while (dist < 700);
*seed = ((*seed) * a) % m;
return(*seed);
return false;
}
// ====================================== Raycaster entry point =====================================
// ==================================================================================================
__kernel void raycaster(
global char* map,
@ -256,7 +284,7 @@ __kernel void raycaster(
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t * offset;
float3 intersection_t = delta_t * (offset);
// for negative values, wrap around the delta_t, rather not do this
// component wise, but it doesn't appear to want to work
@ -324,15 +352,62 @@ __kernel void raycaster(
// set to which face
float3 face_position = convert_float3(face_mask * voxel_step);
if (face_mask.x * voxel_step.x == -1) {
float z_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.z;
float y_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.y;
face_position = (float3)(1.0f, y_percent, z_percent);
if (face_mask.x == 1)
face_position *= -1;
}
if (face_mask.y * voxel_step.y == -1) {
float x_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.x;
float z_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.z;
face_position = (float3)(x_percent, 1.0f, z_percent);
if (face_mask.y == 1)
face_position *= -1;
}
if (face_mask.z * voxel_step.z == -1) {
float vx = intersection_t.x - delta_t.x;
float vy = intersection_t.y - delta_t.y;
float vz = intersection_t.z - delta_t.z;
float x_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.x;
float y_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.y;
face_position = (float3)(x_percent, y_percent, 1.0f);
if (face_mask.z == 1)
face_position *= -1;
}
// set the xy for that face
face_position += convert_float3(face_mask == (int3)(0,0,0)) * ((intersection_t) / delta_t);
//face_position +=
// convert_float3(face_mask == (int3)(1,1,1))
// convert_float3(face_mask == (int3)(0,0,0)) * (intersection_t - delta_t);
//face_position += convert_float3(face_mask == (int3)(0,0,0)) * (rand(&seed) % 10) / 50.0;
if (cast_light_intersection_ray(
map,
map_dim,
(float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel)),
(convert_float3(voxel) - convert_float3(face_mask * voxel_step)),//face_position),//
normalize((float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel))),
(convert_float3(voxel) + face_position),//convert_float3(face_mask * voxel_step)),//face_position),//
lights,
light_count
)) {

@ -126,11 +126,11 @@ void Camera::recieve_event(VrEventPublisher* publisher, std::unique_ptr<vr::Even
}
}
else if (event->type == vr::Event::KeyHeld) {
else if (event->type == vr::Event::KeyPressed) {
vr::KeyPressed *key_event = static_cast<vr::KeyPressed*>(event.get());
if (key_event->code == sf::Keyboard::M) {
if (key_event->code == sf::Keyboard::Y) {
if (mouse_enabled)
mouse_enabled = false;
else

@ -139,9 +139,9 @@ void Old_Map::generate_terrain() {
}
for (int x = dimensions.x / 2; x < dimensions.x / 2 + dimensions.x / 16; x++) {
for (int y = dimensions.x / 2; y < dimensions.y / 2 + dimensions.x / 16; y++) {
for (int z = 0; z < 20; z++) {
for (int x = dimensions.x / 2; x < dimensions.x / 2 + dimensions.x / 64; x++) {
for (int y = dimensions.x / 2; y < dimensions.y / 2 + dimensions.x / 64; y++) {
for (int z = 0; z < 5; z++) {
voxel_data[x + dimensions.x * (y + dimensions.z * z)] = 6;
}

@ -162,6 +162,7 @@ int main() {
Input input_handler;
camera->subscribe_to_publisher(&input_handler, vr::Event::EventType::KeyHeld);
camera->subscribe_to_publisher(&input_handler, vr::Event::EventType::KeyPressed);
camera->subscribe_to_publisher(&input_handler, vr::Event::EventType::MouseMoved);
WindowHandler win_hand(&window);
@ -181,14 +182,15 @@ int main() {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Dash)) {
raycaster->test_edit_viewport(WINDOW_X, WINDOW_Y, w -= 5, h -= 5);
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::L)) {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::LAlt)) {
light_vec.at(0).position = camera->get_position();
light_vec.at(0).direction_cartesian = SphereToCart(camera->get_direction());
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::N)) {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::O)) {
light_vec.at(0).orbit_around_center(timer_accumulator += delta_time);
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::N)) {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::M)) {
std::string path = "../assets/";
std::string filename;
std::getline(std::cin, filename);

Loading…
Cancel
Save