Fixed mac compatability

master
MitchellHansen 8 years ago
commit b7d4191d82

@ -29,10 +29,6 @@ struct XYZHasher {
}
};
class Octree {
public:
Octree() {
@ -83,18 +79,41 @@ public:
}
// (X, Y, Z) mask for the idx
uint8_t idx_set_x_mask = 0x1;
uint8_t idx_set_y_mask = 0x2;
uint8_t idx_set_z_mask = 0x4;
uint8_t mask_8[8] = {
0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7
};
uint8_t count_mask_8[8]{
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF
};
// With a position and the head of the stack. Traverse down the voxel hierarchy to find
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
bool get_voxel(sf::Vector3i position) {
// Init the parent stack and push the head node
std::queue<uint64_t> parent_stack;
//std::queue<uint64_t> parent_stack;
int parent_stack_position = 0;
uint64_t parent_stack[32] = {0};
uint64_t head = block_stack.front()[stack_pos];
parent_stack.push(head);
parent_stack[parent_stack_position] = head;
// Get the index of the first child of the head node
uint64_t index = head & child_pointer_mask;
uint8_t scale = 0;
uint8_t idx_stack[32] = {0};
// Init the idx stack
std::vector<std::bitset<3>> scale_stack(log2(OCT_DIM));
@ -104,31 +123,83 @@ public:
while (dimension > 1) {
// Do the logic steps to find which sub oct we step down into
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
idx_stack[scale] |= idx_set_x_mask;
// Debug
scale_stack.at(log2(OCT_DIM) - log2(dimension)).set(0);
}
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y += (dimension / 2);
quad_position.y |= (dimension / 2);
mask_index += 2;
idx_stack[scale] ^= idx_set_y_mask;
scale_stack.at(log2(OCT_DIM) - log2(dimension)).set(1);
}
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
idx_stack[scale] |= idx_set_z_mask;
scale_stack.at(log2(OCT_DIM) - log2(dimension)).set(2);
}
// Set the new dimension
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
break;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
scale++;
dimension /= 2;
// We also need to traverse to the correct child pointer
// Count the number of non-leaf octs that come before and add it to the current parent stack position
int count = count_bits((uint8_t)(head >> 24) ^ count_mask_8[mask_index]);
int index = (parent_stack[parent_stack_position] & child_pointer_mask) + count;
// Increment the parent stack position and put the new oct node as the parent
parent_stack_position++;
parent_stack[parent_stack_position] = block_stack.front()[index];
} else {
// If the oct was not valid, then no CP's exists any further
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
break;
}
}
uint64_t child1 = block_stack.front()[index];
uint64_t child2 = block_stack.front()[index+1];
std::bitset<64> t(index);
auto val = t.count();

@ -81,7 +81,7 @@ private:
int check_cl_khr_gl_sharing();
int create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture);
int create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type);
int create_buffer(std::string buffer_name, cl_uint size, void* data);
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
int store_buffer(cl_mem, std::string buffer_name);

@ -272,3 +272,25 @@ inline std::vector<float> sfml_get_float_input(sf::RenderWindow *window) {
}
inline int count_bits(int32_t v) {
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; // count
}
inline int count_bits(int64_t v) {
int32_t left = (int32_t)(v);
int32_t right = (int32_t)(v >> 32);
left = left - ((left >> 1) & 0x55555555); // reuse input as temporary
left = (left & 0x33333333) + ((left >> 2) & 0x33333333); // temp
left = ((left + (left >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
right = right - ((right >> 1) & 0x55555555); // reuse input as temporary
right = (right & 0x33333333) + ((right >> 2) & 0x33333333); // temp
right = ((right + (right >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
return left + right;
}

@ -86,13 +86,13 @@ uint64_t Map::generate_children(sf::Vector3i pos, int dim) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY
std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x, pos.y, pos.z),
sf::Vector3i(pos.x + dim, pos.y, pos.z),
sf::Vector3i(pos.x, pos.y + dim, pos.z),
sf::Vector3i(pos.x , pos.y , pos.z),
sf::Vector3i(pos.x + dim, pos.y , pos.z),
sf::Vector3i(pos.x , pos.y + dim, pos.z),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z),
sf::Vector3i(pos.x, pos.y, pos.z + dim),
sf::Vector3i(pos.x + dim, pos.y, pos.z + dim),
sf::Vector3i(pos.x, pos.y + dim, pos.z + dim),
sf::Vector3i(pos.x , pos.y , pos.z + dim),
sf::Vector3i(pos.x + dim, pos.y , pos.z + dim),
sf::Vector3i(pos.x , pos.y + dim, pos.z + dim),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim)
};

@ -68,7 +68,11 @@ sf::Texture window_texture;
// Y: 1.57 is straight down
// TODO:
// - Texture axis sign flipping issue
// - Diffuse fog hard cut off
// - Infinite light distance, no inverse square
// - Inconsistent lighting constants. GUI manipulation
int main() {

@ -99,10 +99,9 @@ void Hardware_Caster::validate()
void Hardware_Caster::create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim) {
create_image_buffer("texture_atlas", t->getSize().y * t->getSize().x * 4 * sizeof(float), t);
create_image_buffer("texture_atlas", t->getSize().x * t->getSize().x * 4 * sizeof(float), t, CL_MEM_READ_ONLY);
// create_buffer observes arg 3's
sf::Vector2u v = t->getSize();
create_buffer("atlas_dim", sizeof(sf::Vector2u) , &v);
@ -191,7 +190,7 @@ void Hardware_Caster::create_viewport(int width, int height, float v_fov, float
viewport_sprite.setTexture(viewport_texture);
// Pass the buffer to opencl
create_image_buffer("image", sizeof(sf::Uint8) * width * height * 4, &viewport_texture);
create_image_buffer("image", sizeof(sf::Uint8) * width * height * 4, &viewport_texture, CL_MEM_WRITE_ONLY);
}
@ -533,7 +532,7 @@ int Hardware_Caster::set_kernel_arg(
}
int Hardware_Caster::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture) {
int Hardware_Caster::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type) {
// I can imagine overwriting buffers will be common, so I think
// this is safe to overwrite / release old buffers quietly
@ -543,7 +542,7 @@ int Hardware_Caster::create_image_buffer(std::string buffer_name, cl_uint size,
int error;
cl_mem buff = clCreateFromGLTexture(
getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D,
getContext(), access_type, GL_TEXTURE_2D,
0, texture->getNativeHandle(), &error);
if (assert(error, "clCreateFromGLTexture"))

Loading…
Cancel
Save