You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

309 lines
7.7 KiB

#pragma once
#include <SFML/System/Vector3.hpp>
#include <SFML/System/Vector2.hpp>
#include <SFML/Graphics/Color.hpp>
#include <iostream>
#include <list>
#include <random>
#include <iostream>
#include <functional>
#include <cmath>
#include <deque>
#include <unordered_map>
#include <bitset>
#include <cstring>
#include <queue>
#include "util.hpp"
#define _USE_MATH_DEFINES
#include <math.h>
#define CHUNK_DIM 32
#define OCT_DIM 8
struct XYZHasher {
std::size_t operator()(const sf::Vector3i& k) const {
return ((std::hash<int>()(k.x)
^ (std::hash<int>()(k.y) << 1)) >> 1)
^ (std::hash<int>()(k.z) << 1);
}
};
class Octree {
public:
Octree() {
// initialize the first stack block
8 years ago
block_stack.push_back(new uint64_t[0x8000]);
for (int i = 0; i < 0x8000; i++) {
8 years ago
block_stack.back()[i] = 0;
}
};
~Octree() {};
8 years ago
std::list<uint64_t*> block_stack;
uint64_t stack_pos = 0x8000;
uint64_t global_pos = 0;
uint64_t copy_to_stack(std::vector<uint64_t> children) {
// Check for the 15 bit boundry
if (stack_pos - children.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= children.size();
}
// Check for the far bit
8 years ago
memcpy(&block_stack.front()[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
// Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place
// it one above preferably.
// And then shift the far bit to 1
// If not, shift the index to its correct place
return stack_pos;
};
int get_idx(sf::Vector3i voxel_pos) {
return 1;
}
// (X, Y, Z) mask for the idx
uint8_t idx_set_x_mask = 0x1;
uint8_t idx_set_y_mask = 0x2;
uint8_t idx_set_z_mask = 0x4;
// Mask for
uint8_t mask_8[8] = {
0x1, 0x2, 0x4, 0x8,
0x10, 0x20, 0x40, 0x80
};
uint8_t count_mask_8[8]{
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF
};
// With a position and the head of the stack. Traverse down the voxel hierarchy to find
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
bool get_voxel(sf::Vector3i position) {
// Init the parent stack
int parent_stack_position = 0;
uint64_t parent_stack[32] = {0};
// and push the head node
8 years ago
uint64_t head = block_stack.front()[stack_pos];
parent_stack[parent_stack_position] = head;
// Get the index of the first child of the head node
uint64_t index = head & child_pointer_mask;
// Init the idx stack
uint8_t scale = 0;
uint8_t idx_stack[32] = {0};
// Init the idx stack (DEBUG)
std::vector<std::bitset<3>> scale_stack(static_cast<uint64_t>(log2(OCT_DIM)));
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) {
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
8 years ago
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
idx_stack[scale] |= idx_set_x_mask;
// Debug
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(0);
}
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y |= (dimension / 2);
mask_index += 2;
idx_stack[scale] ^= idx_set_y_mask;
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(1);
}
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
idx_stack[scale] |= idx_set_z_mask;
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(2);
}
8 years ago
uint64_t out1 = (head >> 16) & mask_8[mask_index];
uint64_t out2 = (head >> 24) & mask_8[mask_index];
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
return true;
break;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
scale++;
dimension /= 2;
// We also need to traverse to the correct child pointer
// Count the number of non-leaf octs that come before and add it to the index to get the position
int count = count_bits((uint8_t)(head >> 24) ^ count_mask_8[mask_index]);
// Because we are getting the position at the first child we need to back up one
// Or maybe it's because my count bits function is wrong...
index = (head & child_pointer_mask) + count - 1;
head = block_stack.front()[index];
// Increment the parent stack position and put the new oct node as the parent
parent_stack_position++;
parent_stack[parent_stack_position] = block_stack.front()[index];
} else {
// If the oct was not valid, then no CP's exists any further
8 years ago
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
return false;
break;
}
}
std::bitset<64> t(index);
auto val = t.count();
return true;
}
void print_block(int block_pos) {
std::stringstream sss;
for (int i = 0; i < (int)pow(2, 15); i++) {
8 years ago
PrettyPrintUINT64(block_stack.front()[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
}
private:
const uint64_t child_pointer_mask = 0x0000000000007fff;
const uint64_t far_bit_mask = 0x8000;
const uint64_t valid_mask = 0xFF0000;
const uint64_t leaf_mask = 0xFF000000;
const uint64_t contour_pointer_mask = 0xFFFFFF00000000;
const uint64_t contour_mask = 0xFF00000000000000;
};
class Map {
public:
Map(sf::Vector3i position);
void generate_octree();
void load_unload(sf::Vector3i world_position);
void load_single(sf::Vector3i world_position);
sf::Vector3i getDimensions();
char *list;
//sf::Vector3i dimensions;
void setVoxel(sf::Vector3i position, int val);
char getVoxelFromOctree(sf::Vector3i position);
bool getVoxel(sf::Vector3i pos);
Octree a;
sf::Vector3f global_light;
void test_map();
protected:
private:
// DEBUG
int counter = 0;
std::stringstream output_stream;
// !DEBUG
uint64_t generate_children(sf::Vector3i pos, int dim);
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
//std::unordered_map<sf::Vector3i, Chunk, XYZHasher> chunk_map;
double* height_map;
// 2^k
int chunk_radius = 6;
sf::Vector3i world_to_chunk(sf::Vector3i world_coords) {
return sf::Vector3i(
world_coords.x / CHUNK_DIM + 1,
world_coords.y / CHUNK_DIM + 1,
world_coords.z / CHUNK_DIM + 1
);
}
};