You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

259 lines
7.2 KiB

float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
dot(
normalize(light),
normalize(fabs(convert_float3(mask)))
)
) / 2;
return input;
}
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
float4 cast_light_rays(
float3 eye_direction,
float3 ray_origin,
float4 voxel_color,
float3 voxel_normal,
global float* lights,
global int* light_count) {
// set the ray origin to be where the initial ray intersected the voxel
// which side z, and the x and y position
float ambient_constant = 0.5;
float intensity = 0;
for (int i = 0; i < *light_count; i++) {
float distance = sqrt(
pow(lights[10 * i + 4] - ray_origin.x, 2) +
pow(lights[10 * i + 5] - ray_origin.y, 2) +
pow(lights[10 * i + 6] - ray_origin.z, 2));
if (distance > 50)
continue;
float3 light_direction = (lights[10 * i + 7], lights[10 * i + 8], lights[10 * i + 9]);
float c = 10.0;
//if (dot(light_direction, voxel_normal) > 0.0) {
float3 halfwayVector = normalize(light_direction + eye_direction);
float dot_prod = dot(voxel_normal, halfwayVector);
float specTmp = max((float)dot_prod, 0.0f);
intensity += pow(specTmp, c);
//}
}
if (get_global_id(0) == 1037760) {
//printf("%f", intensity);
voxel_color = (float4)(1.0, 1.0, 1.0, 1.0);
return voxel_color;
}
voxel_color.w *= intensity;
voxel_color.w += ambient_constant;
return voxel_color;
// for every light
//
// check if the light is within falloff distance
// every unit, light halfs
//
// if it is, cast a ray to that light and check for collisions.
// if ray exits voxel volume, assume unobstructed
//
// if ray intersects a voxel, dont influence the voxel color
//
// if it does
}
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
*seed = ((*seed) * a) % m;
return(*seed);
}
__kernel void raycaster(
global char* map,
global int3* map_dim,
global int2* resolution,
global float3* projection_matrix,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image,
global int* seed_memory
){
int global_id = get_global_id(1) * get_global_size(0) + get_global_id(0);
int seed = seed_memory[global_id];
int random_number = rand(&seed);
seed_memory[global_id] = seed;
size_t id = get_global_id(0);
int2 pixel = {id % (*resolution).x, id / (*resolution).x};
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
if (pixel.x == 960 && pixel.y == 540) {
write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
return;
}
ray_dir = (float3)(
// 1.57s are temp fix until view matrix is tweaked
ray_dir.z * sin((*cam_dir).x - 1.57) + ray_dir.x * cos((*cam_dir).x - 1.57),
ray_dir.y,
ray_dir.z * cos((*cam_dir).x - 1.57) - ray_dir.x * sin((*cam_dir).x - 1.57)
);
ray_dir = (float3)(
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(*cam_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
float3 offset = ((*cam_pos) - floor(*cam_pos)) * convert_float3(voxel_step);
//offset.x += delta_t.x * convert_float((voxel_step.x < 0));
//offset -= delta_t * floor(offset / delta_t);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t * offset;
// for negative values, wrap around the delta_t, rather not do this
// component wise, but it doesn't appear to want to work
if (intersection_t.x < 0) {
intersection_t.x += delta_t.x;
}
if (intersection_t.y < 0) {
intersection_t.y += delta_t.y;
}
if (intersection_t.z < 0) {
intersection_t.z += delta_t.z;
}
// use a ghetto ass rng to give rays a "fog" appearance
int2 randoms = { random_number, 14 };
uint tseed = randoms.x + id;
uint t = tseed ^ (tseed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
int max_dist = 800 + result % 100;
int dist = 0;
int3 mask = { 0, 0, 0 };
float4 color = { 0.73, 0.81, 0.89, 0.6 };
float4 c = (float4)(0.60, 0.00, 0.40, 0.1);
c.x += (result % 100) / 10;
// Andrew Woo's raycasting algo
do {
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz;
// If the ray went out of bounds
int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
return;
}
if (undershoot.z == 0) {
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
return;
}
// If we hit a voxel
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
// Why the off by one on voxel.y?
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z-1));
int voxel_data = map[index];
if (voxel_data != 0) {
switch (voxel_data) {
case 1:
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
return;
case 2:
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
return;
case 3:
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
return;
case 4:
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return;
case 5:
//write_imagef(image, pixel, (float4)(0.40, 0.00, 0.40, 0.2));
write_imagef(image, pixel, white_light(mix(color, c, 1.0 - max((dist/700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
return;
float3 vox = convert_float3(voxel);
float3 norm = normalize(convert_float3(mask) * convert_float3(voxel_step));
float4 color = (float4)(0.95, 0.00, 0.25, 1.00);
write_imagef(image, pixel,
cast_light_rays(
ray_dir,
vox,
color,
norm ,
lights,
light_count
));
return;
case 6:
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
return;
default:
//write_imagef(image, pixel, (float4)(.30, .10, .10, 1.00));
continue;
}
}
dist++;
} while (dist / 700.0f < 1);
//dist < max_dist
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
//write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return;
}