Well I got something coming up, performance is worse than I was hoping, but there's a lot of optimization to go

master
mitchellhansen 7 years ago
parent 24a97e47e1
commit 86bcd4f0ae

@ -114,7 +114,7 @@ struct TraversalState {
}; };
bool get_oct_vox( struct TraversalState get_oct_vox(
int3 position, int3 position,
global ulong *octree_descriptor_buffer, global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer, global uint *octree_attachment_lookup_buffer,
@ -184,7 +184,8 @@ bool get_oct_vox(
// If it is, then we cannot traverse further as CP's won't have been generated // If it is, then we cannot traverse further as CP's won't have been generated
ts.found = true; ts.found = true;
return ts.found; return ts;
//return ts.found;
} }
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
@ -221,12 +222,14 @@ bool get_oct_vox(
// Currently it adds the last parent on the second to lowest // Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct // oct CP. Not sure if thats correct
ts.found = 0; ts.found = 0;
return ts.found; return ts;
//return ts.found;
} }
} }
ts.found = 1; ts.found = 1;
return ts.found; return ts;
//return ts.found;
} }
// ========================================================================= // =========================================================================
@ -260,27 +263,27 @@ __kernel void raycaster(
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x), ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
ray_dir.y, ray_dir.y,
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x) ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
); );
// Yaw // Yaw
ray_dir = (float3)( ray_dir = (float3)(
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y), ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y), ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z ray_dir.z
); );
if (any(ray_dir == zeroed_float3)) if (any(ray_dir == zeroed_float3))
return; return;
// Setup the voxel step based on what direction the ray is pointing // Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1}; int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0); voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin // Setup the voxel coords from the camera origin
int3 voxel = convert_int3_rtn(*cam_pos); int3 voxel = convert_int3_rtn(*cam_pos);
//voxel = voxel + convert_int3(*cam_pos < 0.0f); //voxel = voxel + convert_int3(*cam_pos < 0.0f);
// Delta T is the units a ray must travel along an axis in order to // Delta T is the units a ray must travel along an axis in order to
// traverse an integer split // traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir); float3 delta_t = fabs(1.0f / ray_dir);
// Intersection T is the collection of the next intersection points // Intersection T is the collection of the next intersection points
@ -311,44 +314,236 @@ __kernel void raycaster(
float fog_distance = 0.0f; float fog_distance = 0.0f;
bool shadow_ray = false; bool shadow_ray = false;
int vox_dim = setting(OCTDIM);
struct TraversalState traversal_state;
traversal_state = get_oct_vox(
voxel,
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer,
settings_buffer);
int jump_power = (int)log2((float)vox_dim) - traversal_state.scale;
int prev_jump_power = jump_power;
// TODO: DEBUG
int failsafe = 0;
// Andrew Woo's raycasting algo // Andrew Woo's raycasting algo
while (distance_traveled < max_distance && bounce_count < 2) { while (distance_traveled < max_distance && bounce_count < 2) {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); // If we hit a voxel
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz)); if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x/2){
voxel.xyz += voxel_step.xyz * face_mask.xyz; //if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
// // traversal_state = get_oct_vox(
// Test for out of bounds contions, add fog // // voxel,
if (any(voxel >= *map_dim) || any(voxel < 0)){ // // octree_descriptor_buffer,
voxel.xyz -= voxel_step.xyz * face_mask.xyz; // // octree_attachment_lookup_buffer,
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); // // octree_attachment_buffer,
color_accumulator.w *= 4; // // settings_buffer);
break; // if (traversal_state.found){
} // voxel_data = 5;
int vox_dim = setting(OCTDIM); // } else {
// voxel_data = 0;
// If we hit a voxel // }
//
if (setting(OCTENABLED) == 1 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
if (get_oct_vox( // Fancy no branch version of the logic step
voxel, face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer, intersection_t +=
settings_buffer delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
)){
voxel_data = 5;
} else { int3 other_faces = face_mask.xyz ? 0 : 1;
voxel_data = 0; intersection_t +=
} delta_t * jump_power * fabs(convert_float3(other_faces.xyz))
} else { - delta_t * prev_jump_power * fabs(convert_float3(other_faces.xyz));
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz;
// Test for out of bounds contions, add fog
if (any(voxel >= *map_dim) || any(voxel < 0)){
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
color_accumulator.w *= 4;
break;
}
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
uchar this_face_mask = 0;
// Check the voxel face that we traversed
// and increment the idx in the idx stack
if (face_mask.x) {
this_face_mask = idx_set_x_mask;
}
else if (face_mask.y) {
this_face_mask = idx_set_y_mask;
}
else if (face_mask.z) {
this_face_mask = idx_set_z_mask;
}
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
// Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
uchar mask_index = traversal_state.idx_stack[traversal_state.scale];
// Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
bool is_valid = false;
// TODO: Rework this logic so we don't have this bodgy if
if (mask_index > prev_val)
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
// Check to see if the idx increased or decreased
// If it decreased
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
failsafe = 0;
while (mask_index < prev_val || !is_valid) {
jump_power *= 2;
// Keep track of the 0th edge of our current oct
traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power;
traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power;
traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power;
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0;
// Scale is now set to the oct above. Be wary of this
traversal_state.scale--;
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale];
// Clear and pop the parent stack, maybe off by one error?
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
traversal_state.parent_stack_position--;
// Set the current CD to the one on top of the stack
traversal_state.current_descriptor =
traversal_state.parent_stack[traversal_state.parent_stack_position];
// Apply the face mask to the new idx for the while check
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
// Get the mask index of the new idx and check the valid status
mask_index = traversal_state.idx_stack[traversal_state.scale];
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
failsafe++;
if (failsafe > 10000)
break;
}
// At this point parent_stack[position] is at the CD of an oct with a
// valid oct at the leaf indicated by the current idx in the idx stack scale
failsafe = 0;
// While we haven't bottomed out and the oct we're looking at is valid
while (jump_power > 1 && is_valid) {
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
traversal_state.scale++;
jump_power /= 2;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
//TODO: REWORK THIS IF STATEMENT, PERF KILLER
// If this CD had the far bit set
if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
// access the far point at which the head points too. Determine it's value, and add
// the count of the valid bits in the current CD to the index
uint far_pointer_index =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count;
}
// If this CD doesn't have the far bit set, access the element at which head points to
// and then add the specified number of indices to get to the correct child descriptor
else {
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
}
// Now that we have the index set we can increase our parent stack position to the next level and
// retrieve the value of its CD
traversal_state.parent_stack_position++;
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
// Do the logic steps to find which sub oct we step down into
if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
// Set our voxel position to the (0,0) of the correct oct
traversal_state.oct_pos.x += (jump_power / 2);
// Set the idx to represent the move
traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
}
if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
traversal_state.oct_pos.y += (jump_power / 2);
traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
}
if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
traversal_state.oct_pos.z += (jump_power / 2);
traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
}
// Update the mask index with the new voxel we walked down to, and then check it's valid status
mask_index = traversal_state.idx_stack[traversal_state.scale];
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
failsafe++;
if (failsafe > 100)
break;
}
// // Test for out of bounds contions, add fog
// if (traversal_state.scale == 1){
// //voxel.xyz -= voxel_step.xyz * face_mask.xyz;
// color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
// color_accumulator.w *= 4;
// break;
// }
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
} else {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
// Test for out of bounds contions, add fog
if (any(voxel >= *map_dim) || any(voxel < 0)){
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
color_accumulator.w *= 4;
break;
}
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))]; voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
} }
if (voxel_data == 5 || voxel_data == 6) { if (voxel_data == 5 || voxel_data == 6) {
// Determine where on the 2d plane the ray intersected // Determine where on the 2d plane the ray intersected
face_position = zeroed_float3; face_position = zeroed_float3;

Loading…
Cancel
Save