@ -114,7 +114,7 @@ struct TraversalState {
} ;
bool get_oct_vox (
struct TraversalState get_oct_vox (
int3 position,
global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer,
@ -184,7 +184,8 @@ bool get_oct_vox(
// If it is, then we cannot traverse further as CP 's won 't have been generated
ts.found = true ;
return ts.found ;
return ts ;
//return ts.found ;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
@ -221,12 +222,14 @@ bool get_oct_vox(
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
ts.found = 0 ;
return ts.found ;
return ts ;
//return ts.found ;
}
}
ts.found = 1 ;
return ts.found ;
return ts ;
//return ts.found ;
}
// =========================================================================
@ -260,27 +263,27 @@ __kernel void raycaster(
ray_dir.z * sin ( ( *cam_dir ) . x ) + ray_dir.x * cos ( ( *cam_dir ) . x ) ,
ray_dir.y,
ray_dir.z * cos ( ( *cam_dir ) . x ) - ray_dir.x * sin ( ( *cam_dir ) . x )
) ;
) ;
// Yaw
ray_dir = ( float3 ) (
ray_dir.x * cos ( ( *cam_dir ) . y ) - ray_dir.y * sin ( ( *cam_dir ) . y ) ,
ray_dir.x * sin ( ( *cam_dir ) . y ) + ray_dir.y * cos ( ( *cam_dir ) . y ) ,
ray_dir.z
ray_dir.x * cos ( ( *cam_dir ) . y ) - ray_dir.y * sin ( ( *cam_dir ) . y ) ,
ray_dir.x * sin ( ( *cam_dir ) . y ) + ray_dir.y * cos ( ( *cam_dir ) . y ) ,
ray_dir.z
) ;
if ( any ( ray_dir == zeroed_float3 ) )
return ;
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1 , 1} ;
int3 voxel_step = {1, 1 , 1} ;
voxel_step *= ( ray_dir > 0 ) - ( ray_dir < 0 ) ;
// Setup the voxel coords from the camera origin
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3_rtn ( *cam_pos ) ;
//voxel = voxel + convert_int3 ( *cam_pos < 0.0f ) ;
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs ( 1.0f / ray_dir ) ;
// Intersection T is the collection of the next intersection points
@ -311,44 +314,236 @@ __kernel void raycaster(
float fog_distance = 0.0f ;
bool shadow_ray = false ;
int vox_dim = setting ( OCTDIM ) ;
struct TraversalState traversal_state ;
traversal_state = get_oct_vox (
voxel,
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer,
settings_buffer ) ;
int jump_power = ( int ) log2 ( ( float ) vox_dim ) - traversal_state.scale ;
int prev_jump_power = jump_power ;
// TODO: DEBUG
int failsafe = 0 ;
// Andrew Woo 's raycasting algo
while ( distance_traveled < max_distance && bounce_count < 2 ) {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ;
intersection_t += delta_t * fabs ( convert_float3 ( face_mask.xyz ) ) ;
voxel.xyz += voxel_step.xyz * face_mask.xyz ;
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
color_accumulator.w *= 4 ;
break ;
}
int vox_dim = setting ( OCTDIM ) ;
// If we hit a voxel
if ( setting ( OCTENABLED ) == 1 && voxel.x < ( *map_dim ) . x && voxel.y < ( *map_dim ) . x && voxel.z < ( *map_dim ) . x ) {
if ( get_oct_vox (
voxel,
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer,
settings_buffer
) ) {
voxel_data = 5 ;
} else {
voxel_data = 0 ;
}
} else {
while ( distance_traveled < max_distance && bounce_count < 2 ) {
// If we hit a voxel
if ( setting ( OCTENABLED ) == 0 && voxel.x < ( *map_dim ) . x/2 && voxel.y < ( *map_dim ) . x/2 && voxel.z < ( *map_dim ) . x/2 ) {
//if ( setting ( OCTENABLED ) == 0 && voxel.x < ( *map_dim ) . x && voxel.y < ( *map_dim ) . x && voxel.z < ( *map_dim ) . x ) {
// // traversal_state = get_oct_vox (
// // voxel,
// // octree_descriptor_buffer,
// // octree_attachment_lookup_buffer,
// // octree_attachment_buffer,
// // settings_buffer ) ;
// if ( traversal_state.found ) {
// voxel_data = 5 ;
// } else {
// voxel_data = 0 ;
// }
//
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ;
intersection_t +=
delta_t * jump_power * fabs ( convert_float3 ( face_mask.xyz ) ) ;
int3 other_faces = face_mask.xyz ? 0 : 1 ;
intersection_t +=
delta_t * jump_power * fabs ( convert_float3 ( other_faces.xyz ) )
- delta_t * prev_jump_power * fabs ( convert_float3 ( other_faces.xyz ) ) ;
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz ;
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
color_accumulator.w *= 4 ;
break ;
}
uchar prev_val = traversal_state.idx_stack[traversal_state.scale] ;
uchar this_face_mask = 0 ;
// Check the voxel face that we traversed
// and increment the idx in the idx stack
if ( face_mask.x ) {
this_face_mask = idx_set_x_mask ;
}
else if ( face_mask.y ) {
this_face_mask = idx_set_y_mask ;
}
else if ( face_mask.z ) {
this_face_mask = idx_set_z_mask ;
}
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
// Mask index is the 1D index 'd value of the idx for interaction with the valid / leaf masks
uchar mask_index = traversal_state.idx_stack[traversal_state.scale] ;
// Whether or not the next oct we want to enter in the current CD 's valid mask is 1 or 0
bool is_valid = false ;
// TODO: Rework this logic so we don 't have this bodgy if
if ( mask_index > prev_val )
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
// Check to see if the idx increased or decreased
// If it decreased
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
failsafe = 0 ;
while ( mask_index < prev_val | | !is_valid ) {
jump_power *= 2 ;
// Keep track of the 0th edge of our current oct
traversal_state.oct_pos.x = floor ( ( float ) ( voxel.x / 2 ) ) * jump_power ;
traversal_state.oct_pos.y = floor ( ( float ) ( voxel.y / 2 ) ) * jump_power ;
traversal_state.oct_pos.z = floor ( ( float ) ( voxel.z / 2 ) ) * jump_power ;
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0 ;
// Scale is now set to the oct above. Be wary of this
traversal_state.scale-- ;
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale] ;
// Clear and pop the parent stack, maybe off by one error?
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0 ;
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0 ;
traversal_state.parent_stack_position-- ;
// Set the current CD to the one on top of the stack
traversal_state.current_descriptor =
traversal_state.parent_stack[traversal_state.parent_stack_position] ;
// Apply the face mask to the new idx for the while check
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
// Get the mask index of the new idx and check the valid status
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
failsafe++ ;
if ( failsafe > 10000 )
break ;
}
// At this point parent_stack[position] is at the CD of an oct with a
// valid oct at the leaf indicated by the current idx in the idx stack scale
failsafe = 0 ;
// While we haven 't bottomed out and the oct we 're looking at is valid
while ( jump_power > 1 && is_valid ) {
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
traversal_state.scale++ ;
jump_power /= 2 ;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount ( ( uchar ) ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & count_mask_8[mask_index] ) - 1 ;
//TODO: REWORK THIS IF STATEMENT, PERF KILLER
// If this CD had the far bit set
if ( far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]] ) {
// access the far point at which the head points too. Determine it 's value, and add
// the count of the valid bits in the current CD to the index
uint far_pointer_index =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
( traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask ) ; // the relative prt to the far ptr
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count ;
}
// If this CD doesn 't have the far bit set, access the element at which head points to
// and then add the specified number of indices to get to the correct child descriptor
else {
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
( traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask ) + count ; // The relative dist + the number of bits that were valid
}
// Now that we have the index set we can increase our parent stack position to the next level and
// retrieve the value of its CD
traversal_state.parent_stack_position++ ;
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]] ;
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
// Do the logic steps to find which sub oct we step down into
if ( voxel.x >= ( jump_power / 2 ) + traversal_state.oct_pos.x ) {
// Set our voxel position to the ( 0 , 0 ) of the correct oct
traversal_state.oct_pos.x += ( jump_power / 2 ) ;
// Set the idx to represent the move
traversal_state.idx_stack[traversal_state.scale] | = idx_set_x_mask ;
}
if ( voxel.y >= ( jump_power / 2 ) + traversal_state.oct_pos.y ) {
traversal_state.oct_pos.y += ( jump_power / 2 ) ;
traversal_state.idx_stack[traversal_state.scale] | = idx_set_y_mask ;
}
if ( voxel.z >= ( jump_power / 2 ) + traversal_state.oct_pos.z ) {
traversal_state.oct_pos.z += ( jump_power / 2 ) ;
traversal_state.idx_stack[traversal_state.scale] | = idx_set_z_mask ;
}
// Update the mask index with the new voxel we walked down to, and then check it 's valid status
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
failsafe++ ;
if ( failsafe > 100 )
break ;
}
// // Test for out of bounds contions, add fog
// if ( traversal_state.scale == 1 ) {
// //voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
// color_accumulator = mix ( ( 1.0f, 1.0f, 1.0f, 1.0f ) , ( 1.0f, 1.0f, 1.0f, 1.0f ) , 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
// color_accumulator.w *= 4 ;
// break ;
// }
voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
} else {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ;
intersection_t += delta_t * fabs ( convert_float3 ( face_mask.xyz ) ) ;
voxel.xyz += voxel_step.xyz * face_mask.xyz ;
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
color_accumulator.w *= 4 ;
break ;
}
voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
}
if ( voxel_data == 5 | | voxel_data == 6 ) {
// Determine where on the 2d plane the ray intersected
face_position = zeroed_float3 ;