|
|
|
@ -13,15 +13,98 @@ float4 white_light(float4 input, float3 light, int3 mask) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool cast_light_intersection_ray(
|
|
|
|
|
global char* map,
|
|
|
|
|
global int3* map_dim,
|
|
|
|
|
float3 ray_dir,
|
|
|
|
|
float3 ray_pos,
|
|
|
|
|
global float* lights,
|
|
|
|
|
global int* light_count
|
|
|
|
|
|
|
|
|
|
){
|
|
|
|
|
|
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
|
|
|
int3 voxel_step = { 1, 1, 1 };
|
|
|
|
|
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
|
|
|
|
|
|
// Setup the voxel coords from the camera origin
|
|
|
|
|
int3 voxel = convert_int3(ray_pos);
|
|
|
|
|
|
|
|
|
|
// Delta T is the units a ray must travel along an axis in order to
|
|
|
|
|
// traverse an integer split
|
|
|
|
|
float3 delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
|
|
|
|
|
// offset is how far we are into a voxel, enables sub voxel movement
|
|
|
|
|
float3 offset = ((ray_pos) - floor(ray_pos)) * convert_float3(voxel_step);
|
|
|
|
|
|
|
|
|
|
// Intersection T is the collection of the next intersection points
|
|
|
|
|
// for all 3 axis XYZ.
|
|
|
|
|
float3 intersection_t = delta_t * offset;
|
|
|
|
|
|
|
|
|
|
// for negative values, wrap around the delta_t, rather not do this
|
|
|
|
|
// component wise, but it doesn't appear to want to work
|
|
|
|
|
if (intersection_t.x < 0) {
|
|
|
|
|
intersection_t.x += delta_t.x;
|
|
|
|
|
}
|
|
|
|
|
if (intersection_t.y < 0) {
|
|
|
|
|
intersection_t.y += delta_t.y;
|
|
|
|
|
}
|
|
|
|
|
if (intersection_t.z < 0) {
|
|
|
|
|
intersection_t.z += delta_t.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Hard cut-off for how far the ray can travel
|
|
|
|
|
int max_dist = 800;
|
|
|
|
|
int dist = 0;
|
|
|
|
|
|
|
|
|
|
int3 face_mask = { 0, 0, 0 };
|
|
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
// If we hit a voxel
|
|
|
|
|
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
|
|
|
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
|
|
if (voxel_data != 0) {
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Fancy no branch version of the logic step
|
|
|
|
|
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
|
|
|
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
|
|
|
|
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
|
|
|
int3 overshoot = voxel <= *map_dim;
|
|
|
|
|
int3 undershoot = voxel > 0;
|
|
|
|
|
|
|
|
|
|
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (undershoot.z == 0) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dist++;
|
|
|
|
|
|
|
|
|
|
} while (dist < 700);
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
|
|
|
|
|
|
|
|
|
|
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
|
|
|
|
|
in_color += diffuse * 0.5;
|
|
|
|
|
|
|
|
|
|
if (dot(light, normalize(convert_float3(mask))) > 0.0)
|
|
|
|
|
{
|
|
|
|
|
float3 halfwayVector = normalize(normalize(light) + normalize(view));
|
|
|
|
|
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
|
|
|
|
|
return in_color + pow(specTmp, 1.0f) * 0.01 +diffuse * 0.5;
|
|
|
|
|
in_color += pow(specTmp, 1.0f) * 0.01;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
|
|
|
|
@ -31,9 +114,7 @@ float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cast_ray(float3 ray_origin, float3 ray_direction) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -154,6 +235,7 @@ __kernel void raycaster(
|
|
|
|
|
ray_dir.z
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
|
|
|
int3 voxel_step = {1, 1, 1};
|
|
|
|
|
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
@ -195,6 +277,7 @@ __kernel void raycaster(
|
|
|
|
|
float4 voxel_color = (float4)(0.25, 0.52, 0.30, 0.1);
|
|
|
|
|
float4 overshoot_color = { 0.25, 0.48, 0.52, 0.8 };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
@ -221,13 +304,37 @@ __kernel void raycaster(
|
|
|
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
|
|
if (voxel_data != 0) {
|
|
|
|
|
|
|
|
|
|
switch (voxel_data) {
|
|
|
|
|
|
|
|
|
|
case 5:
|
|
|
|
|
|
|
|
|
|
//write_imagef(image, pixel, (float4)(0.40, 0.00, 0.40, 0.2));
|
|
|
|
|
write_imagef(image, pixel, view_light(voxel_color, (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
|
|
|
|
|
//write_imagef(image, pixel, white_light(mix(fog_color, voxel_color, 1.0 - max((dist/700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
// write_imagef(image, pixel, (float4)(0.90, 0.00, 0.40, 0.9));
|
|
|
|
|
|
|
|
|
|
if (!cast_light_intersection_ray(
|
|
|
|
|
map,
|
|
|
|
|
map_dim,
|
|
|
|
|
(float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel) + offset),
|
|
|
|
|
(convert_float3(voxel) + offset + convert_float3(face_mask)/10.0f),
|
|
|
|
|
lights,
|
|
|
|
|
light_count
|
|
|
|
|
)) {
|
|
|
|
|
|
|
|
|
|
write_imagef(image, pixel, (float4)(0.90, 0.00, 0.40, 0.9));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
write_imagef(
|
|
|
|
|
image,
|
|
|
|
|
pixel,
|
|
|
|
|
view_light(
|
|
|
|
|
voxel_color,
|
|
|
|
|
(convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]),
|
|
|
|
|
(convert_float3(voxel) + offset) - (*cam_pos),
|
|
|
|
|
face_mask * voxel_step
|
|
|
|
|
)
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
float3 vox = convert_float3(voxel);
|
|
|
|
@ -250,7 +357,7 @@ __kernel void raycaster(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
case 6:
|
|
|
|
|
write_imagef(image, pixel, view_light((float4)(0.0, 0.239, 0.419, 0.3), (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
|
|
|
|
|
write_imagef(image, pixel, view_light((float4)(0.0, 0.239, 0.419, 0.3), (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask * voxel_step));
|
|
|
|
|
//write_imagef(image, pixel, white_light(mix((float4)(0.73, 0.81, 0.89, 0.6), (float4)(0.0, 0.239, 0.419, 0.3), 1.0 - max((dist / 700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|