Working with the Blin-Phong lighting. Fixed the symmetry between the normals. Starting working on shadows

master
MitchellHansen 8 years ago
parent 129e475b15
commit 9a12fba310

Binary file not shown.

Before

Width:  |  Height:  |  Size: 554 KiB

After

Width:  |  Height:  |  Size: 370 KiB

@ -13,15 +13,98 @@ float4 white_light(float4 input, float3 light, int3 mask) {
}
bool cast_light_intersection_ray(
global char* map,
global int3* map_dim,
float3 ray_dir,
float3 ray_pos,
global float* lights,
global int* light_count
){
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = { 1, 1, 1 };
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(ray_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
float3 offset = ((ray_pos) - floor(ray_pos)) * convert_float3(voxel_step);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t * offset;
// for negative values, wrap around the delta_t, rather not do this
// component wise, but it doesn't appear to want to work
if (intersection_t.x < 0) {
intersection_t.x += delta_t.x;
}
if (intersection_t.y < 0) {
intersection_t.y += delta_t.y;
}
if (intersection_t.z < 0) {
intersection_t.z += delta_t.z;
}
// Hard cut-off for how far the ray can travel
int max_dist = 800;
int dist = 0;
int3 face_mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
// If we hit a voxel
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
int voxel_data = map[index];
if (voxel_data != 0) {
return true;
}
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
// If the ray went out of bounds
int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
return false;
}
if (undershoot.z == 0) {
return false;
}
dist++;
} while (dist < 700);
return false;
}
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
in_color += diffuse * 0.5;
if (dot(light, normalize(convert_float3(mask))) > 0.0)
{
float3 halfwayVector = normalize(normalize(light) + normalize(view));
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
return in_color + pow(specTmp, 1.0f) * 0.01 +diffuse * 0.5;
in_color += pow(specTmp, 1.0f) * 0.01;
}
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
@ -31,9 +114,7 @@ float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
}
void cast_ray(float3 ray_origin, float3 ray_direction) {
}
@ -154,7 +235,8 @@ __kernel void raycaster(
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
@ -195,7 +277,8 @@ __kernel void raycaster(
float4 voxel_color = (float4)(0.25, 0.52, 0.30, 0.1);
float4 overshoot_color = { 0.25, 0.48, 0.52, 0.8 };
// Andrew Woo's raycasting algo
// Andrew Woo's raycasting algo
do {
// Fancy no branch version of the logic step
@ -221,13 +304,37 @@ __kernel void raycaster(
int voxel_data = map[index];
if (voxel_data != 0) {
switch (voxel_data) {
case 5:
//write_imagef(image, pixel, (float4)(0.40, 0.00, 0.40, 0.2));
write_imagef(image, pixel, view_light(voxel_color, (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
//write_imagef(image, pixel, white_light(mix(fog_color, voxel_color, 1.0 - max((dist/700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
// write_imagef(image, pixel, (float4)(0.90, 0.00, 0.40, 0.9));
if (!cast_light_intersection_ray(
map,
map_dim,
(float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel) + offset),
(convert_float3(voxel) + offset + convert_float3(face_mask)/10.0f),
lights,
light_count
)) {
write_imagef(image, pixel, (float4)(0.90, 0.00, 0.40, 0.9));
return;
}
write_imagef(
image,
pixel,
view_light(
voxel_color,
(convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]),
(convert_float3(voxel) + offset) - (*cam_pos),
face_mask * voxel_step
)
);
return;
float3 vox = convert_float3(voxel);
@ -250,7 +357,7 @@ __kernel void raycaster(
case 6:
write_imagef(image, pixel, view_light((float4)(0.0, 0.239, 0.419, 0.3), (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
write_imagef(image, pixel, view_light((float4)(0.0, 0.239, 0.419, 0.3), (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask * voxel_step));
//write_imagef(image, pixel, white_light(mix((float4)(0.73, 0.81, 0.89, 0.6), (float4)(0.0, 0.239, 0.419, 0.3), 1.0 - max((dist / 700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
return;

@ -115,8 +115,8 @@ int main() {
// Light for the currently non functional Bling Phong shader
Light l;
l.direction_cartesian = sf::Vector3f(+1.5f, -1.2f, -0.5f);
l.position = sf::Vector3f(100.0f, 100.0f, 100.0f);
l.direction_cartesian = sf::Vector3f(-0.2f, -0.2f, -1.5f);
l.position = sf::Vector3f(100.0f, 100.0f, 500.0f);
l.rgbi = sf::Vector4f(0.3f, 0.4f, 0.3f, 1.0f);
std::vector<Light> light_vec;

Loading…
Cancel
Save