|
|
|
|
|
|
|
float DistanceBetweenPoints(float3 a, float3 b) {
|
|
|
|
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2) + pow(a.z - b.z, 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
float Distance(float3 a) {
|
|
|
|
return sqrt(pow(a.x, 2) + pow(a.y, 2) + pow(a.z, 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Naive incident ray light
|
|
|
|
float4 white_light(float4 input, float3 light, int3 mask) {
|
|
|
|
|
|
|
|
input.w = input.w + acos(
|
|
|
|
dot(
|
|
|
|
normalize(light),
|
|
|
|
normalize(convert_float3(mask * (-mask)))
|
|
|
|
)
|
|
|
|
) / 32;
|
|
|
|
|
|
|
|
return input;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Phong + diffuse lighting function for g
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7 8 9
|
|
|
|
// {r, g, b, i, x, y, z, x', y', z'}
|
|
|
|
|
|
|
|
|
|
|
|
float4 view_light(float4 in_color, float3 light, float4 light_color, float3 view, int3 mask) {
|
|
|
|
|
|
|
|
float d = Distance(light) / 100.0f;
|
|
|
|
d *= d;
|
|
|
|
|
|
|
|
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
|
|
|
|
in_color += diffuse * light_color * 0.5f / d;
|
|
|
|
|
|
|
|
if (dot(light, normalize(convert_float3(mask))) > 0.0f)
|
|
|
|
{
|
|
|
|
float3 halfwayVector = normalize(normalize(light) + normalize(view));
|
|
|
|
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
|
|
|
|
in_color += pow(specTmp, 8.0f) * light_color * 0.5f / d;
|
|
|
|
}
|
|
|
|
|
|
|
|
return in_color;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int rand(int* seed) // 1 <= *seed < m
|
|
|
|
{
|
|
|
|
int const a = 16807; //ie 7**5
|
|
|
|
int const m = 2147483647; //ie 2**31-1
|
|
|
|
|
|
|
|
*seed = ((*seed) * a) % m;
|
|
|
|
return(*seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// =================================== Boolean ray intersection ============================
|
|
|
|
// =========================================================================================
|
|
|
|
|
|
|
|
bool cast_light_intersection_ray(
|
|
|
|
global char* map,
|
|
|
|
global int3* map_dim,
|
|
|
|
float3 ray_dir,
|
|
|
|
float3 ray_pos,
|
|
|
|
global float* lights,
|
|
|
|
global int* light_count
|
|
|
|
|
|
|
|
){
|
|
|
|
|
|
|
|
float distance_to_light = DistanceBetweenPoints(ray_pos, (float3)(lights[4], lights[5], lights[6]));
|
|
|
|
//if (distance_to_light > 200.0f){
|
|
|
|
// return false;
|
|
|
|
//}
|
|
|
|
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
|
|
int3 voxel_step = { 1, 1, 1 };
|
|
|
|
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
|
|
|
|
// Setup the voxel coords from the camera origin
|
|
|
|
int3 voxel = convert_int3(ray_pos);
|
|
|
|
|
|
|
|
// Delta T is the units a ray must travel along an axis in order to
|
|
|
|
// traverse an integer split
|
|
|
|
float3 delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
|
|
|
// offset is how far we are into a voxel, enables sub voxel movement
|
|
|
|
float3 offset = ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
|
|
|
|
|
|
|
|
// Intersection T is the collection of the next intersection points
|
|
|
|
// for all 3 axis XYZ.
|
|
|
|
float3 intersection_t = delta_t *offset;
|
|
|
|
|
|
|
|
// for negative values, wrap around the delta_t
|
|
|
|
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
|
|
|
int3 face_mask = { 0, 0, 0 };
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
do {
|
|
|
|
|
|
|
|
// Fancy no branch version of the logic step
|
|
|
|
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
|
|
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
|
|
|
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
|
|
int3 overshoot = voxel < *map_dim;
|
|
|
|
int3 undershoot = voxel >= 0;
|
|
|
|
|
|
|
|
if (any(overshoot == (int3)(0, 0, 0)) ||
|
|
|
|
any(undershoot == (int3)(0, 0, 0))) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we hit a voxel
|
|
|
|
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
|
|
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
if (voxel_data != 0)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
//} while (any(isless(intersection_t, (float3)(distance_to_light - 1))));
|
|
|
|
} while (intersection_t.x < distance_to_light - 1 ||
|
|
|
|
intersection_t.y < distance_to_light - 1 ||
|
|
|
|
intersection_t.z < distance_to_light - 1 );
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ====================================== Raycaster entry point =====================================
|
|
|
|
// ==================================================================================================
|
|
|
|
|
|
|
|
__kernel void raycaster(
|
|
|
|
global char* map,
|
|
|
|
global int3* map_dim,
|
|
|
|
global int2* resolution,
|
|
|
|
global float3* projection_matrix,
|
|
|
|
global float2* cam_dir,
|
|
|
|
global float3* cam_pos,
|
|
|
|
global float* lights,
|
|
|
|
global int* light_count,
|
|
|
|
__write_only image2d_t image,
|
|
|
|
global int* seed_memory,
|
|
|
|
__read_only image2d_t texture_atlas,
|
|
|
|
global int2 *atlas_dim,
|
|
|
|
global int2 *tile_dim
|
|
|
|
){
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int x = get_global_id(0);
|
|
|
|
int y = get_global_id(1);
|
|
|
|
|
|
|
|
int global_id = x * y;
|
|
|
|
|
|
|
|
// Get and set the random seed from seed memory
|
|
|
|
int seed = seed_memory[global_id];
|
|
|
|
int random_number = rand(&seed);
|
|
|
|
seed_memory[global_id] = seed;
|
|
|
|
|
|
|
|
// Get the pixel on the viewport, and find the view matrix ray that matches it
|
|
|
|
//int2 pixel = { global_id % (*resolution).x, global_id / (*resolution).x };
|
|
|
|
int2 pixel = (int2)(x, y);
|
|
|
|
|
|
|
|
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
|
|
|
|
|
|
|
|
//if (pixel.x == 960 && pixel.y == 540) {
|
|
|
|
// write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
|
|
|
|
// return;
|
|
|
|
//}
|
|
|
|
|
|
|
|
// Pitch
|
|
|
|
ray_dir = (float3)(
|
|
|
|
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
|
|
|
|
ray_dir.y,
|
|
|
|
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
|
|
|
|
);
|
|
|
|
|
|
|
|
// Yaw
|
|
|
|
ray_dir = (float3)(
|
|
|
|
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
|
|
|
|
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
|
|
|
|
ray_dir.z
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
|
|
int3 voxel_step = {1, 1, 1};
|
|
|
|
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
|
|
|
|
// Setup the voxel coords from the camera origin
|
|
|
|
int3 voxel = convert_int3(*cam_pos);
|
|
|
|
|
|
|
|
// Delta T is the units a ray must travel along an axis in order to
|
|
|
|
// traverse an integer split
|
|
|
|
float3 delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
|
|
|
// offset is how far we are into a voxel, enables sub voxel movement
|
|
|
|
float3 offset = ((*cam_pos) - floor(*cam_pos)) * convert_float3(voxel_step);
|
|
|
|
|
|
|
|
|
|
|
|
// Intersection T is the collection of the next intersection points
|
|
|
|
// for all 3 axis XYZ.
|
|
|
|
float3 intersection_t = delta_t * offset;
|
|
|
|
|
|
|
|
// for negative values, wrap around the delta_t
|
|
|
|
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
|
|
|
|
|
|
|
// Hard cut-off for how far the ray can travel
|
|
|
|
int max_dist = 800;
|
|
|
|
int dist = 0;
|
|
|
|
|
|
|
|
|
|
|
|
int3 face_mask = { 0, 0, 0 };
|
|
|
|
float4 fog_color = { 0.73f, 0.81f, 0.89f, 0.8f };
|
|
|
|
float4 voxel_color = (float4)(0.0f, 0.0f, 0.0f, 0.001f);
|
|
|
|
float4 overshoot_color = { 0.25f, 0.48f, 0.52f, 0.8f };
|
|
|
|
float4 overshoot_color_2 = { 0.25f, 0.1f, 0.52f, 0.8f };
|
|
|
|
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
do {
|
|
|
|
|
|
|
|
// Fancy no branch version of the logic step
|
|
|
|
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
|
|
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
|
|
|
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
|
|
int3 overshoot = voxel < *map_dim;
|
|
|
|
int3 undershoot = voxel >= 0;
|
|
|
|
|
|
|
|
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (undershoot.z == 0) {
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color_2, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we hit a voxel
|
|
|
|
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
|
|
|
|
int voxel_data = map[index];
|
|
|
|
if (all(voxel == convert_int3((float3)(lights[4], lights[5], lights[6]-3))))
|
|
|
|
voxel_data = 1;
|
|
|
|
|
|
|
|
if (voxel_data != 0) {
|
|
|
|
|
|
|
|
// Determine where on the 2d plane the ray intersected
|
|
|
|
|
|
|
|
float3 face_position = (float)(0);
|
|
|
|
float2 tile_face_position = (float)(0);
|
|
|
|
|
|
|
|
|
|
|
|
// First determine the percent of the way the ray is towards the next intersection_t
|
|
|
|
// in relation to the xyz position on the plane
|
|
|
|
if (face_mask.x == -1) {
|
|
|
|
|
|
|
|
float z_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.z;
|
|
|
|
float y_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.y;
|
|
|
|
|
|
|
|
// Since we intersected face x, we know that we are at the face (1.0)
|
|
|
|
// Not entirely sure what is causing the 1.0 vs 1.001 rendering bug
|
|
|
|
face_position = (float3)(1.001f, y_percent, z_percent);
|
|
|
|
tile_face_position = (float2)(y_percent, z_percent);
|
|
|
|
}
|
|
|
|
else if (face_mask.y == -1) {
|
|
|
|
|
|
|
|
float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
|
|
|
|
float z_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.z;
|
|
|
|
|
|
|
|
face_position = (float3)(x_percent, 1.001f, z_percent);
|
|
|
|
tile_face_position = (float2)(x_percent, z_percent);
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (face_mask.z == -1) {
|
|
|
|
|
|
|
|
float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
|
|
|
|
float y_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.y;
|
|
|
|
|
|
|
|
face_position = (float3)(x_percent, y_percent, 1.001f);
|
|
|
|
tile_face_position = (float2)(x_percent, y_percent);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// We now need to account for the ray wanting to skip the axis in which
|
|
|
|
// it flips its sign
|
|
|
|
|
|
|
|
// TODO: improve this
|
|
|
|
|
|
|
|
if (ray_dir.x > 0) {
|
|
|
|
face_position.x = -face_position.x + 1;
|
|
|
|
//tile_face_position.x = -tile_face_position.x + 1.0;
|
|
|
|
}
|
|
|
|
if (ray_dir.x < 0) {
|
|
|
|
//face_position.x = face_position.x + 0;
|
|
|
|
//tile_face_position.x = tile_face_position.x;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ray_dir.y > 0){
|
|
|
|
face_position.y = - face_position.y + 1;
|
|
|
|
//tile_face_position.y = -tile_face_position.y + 1.0;
|
|
|
|
}
|
|
|
|
if (ray_dir.y < 0) {
|
|
|
|
//face_position.y = face_position.y + 0;
|
|
|
|
//tile_face_position.y = -tile_face_position.y + 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ray_dir.z > 0) {
|
|
|
|
face_position.z = - face_position.z + 1;
|
|
|
|
//tile_face_position.y = tile_face_position.y + 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ray_dir.z < 0) {
|
|
|
|
//face_position.z = face_position.z + 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Now either use the face position to retrieve a texture sample, or
|
|
|
|
// just a plain color for the voxel color
|
|
|
|
|
|
|
|
if (voxel_data == 6) {
|
|
|
|
voxel_color = (float4)(0.0f, 0.239f, 0.419f, 0.0f);
|
|
|
|
}
|
|
|
|
else if (voxel_data == 5) {
|
|
|
|
float2 tile_size = convert_float2(*atlas_dim / *tile_dim);
|
|
|
|
voxel_color = read_imagef(texture_atlas, convert_int2(tile_face_position * tile_size) + convert_int2((float2)(3, 0) * tile_size));
|
|
|
|
voxel_color.w = 0.0f;
|
|
|
|
//voxel_color = (float4)(0.25, 0.52, 0.30, 0.1);
|
|
|
|
}
|
|
|
|
else if (voxel_data == 1) {
|
|
|
|
voxel_color = (float4)(0.929f, 0.957f, 0.027f, 0.0f);
|
|
|
|
}
|
|
|
|
//else {
|
|
|
|
// voxel_color = (float4)(1.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
//}
|
|
|
|
//
|
|
|
|
|
|
|
|
if (cast_light_intersection_ray(
|
|
|
|
map,
|
|
|
|
map_dim,
|
|
|
|
normalize((float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel) + face_position)),
|
|
|
|
(convert_float3(voxel) + face_position),
|
|
|
|
lights,
|
|
|
|
light_count
|
|
|
|
)) {
|
|
|
|
|
|
|
|
// If the light ray intersected an object on the way to the light point
|
|
|
|
float4 ambient_color = white_light(voxel_color, (float3)(256.0f, 256.0f, 256.0f), face_mask);
|
|
|
|
write_imagef(image, pixel, ambient_color);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7 8 9
|
|
|
|
// {r, g, b, i, x, y, z, x', y', z'}
|
|
|
|
|
|
|
|
write_imagef(
|
|
|
|
image,
|
|
|
|
pixel,
|
|
|
|
view_light(
|
|
|
|
voxel_color,
|
|
|
|
(convert_float3(voxel) + face_position) - (float3)(lights[4], lights[5], lights[6]),
|
|
|
|
(float4)(lights[0], lights[1], lights[2], lights[3]),
|
|
|
|
(convert_float3(voxel) + face_position) - (*cam_pos),
|
|
|
|
face_mask * voxel_step
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
dist++;
|
|
|
|
|
|
|
|
} while (dist / 700.0f < 1);
|
|
|
|
|
|
|
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
return;
|
|
|
|
}
|