You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

391 lines
12 KiB

float DistanceBetweenPoints(float3 a, float3 b) {
return fast_distance(a, b);
//return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2) + pow(a.z - b.z, 2));
}
float Distance(float3 a) {
return fast_length(a);
//return sqrt(pow(a.x, 2) + pow(a.y, 2) + pow(a.z, 2));
}
// Naive incident ray light
float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
dot(
normalize(light),
normalize(convert_float3(mask * (-mask)))
)
) / 32;
input.w += 0.25f;
return input;
}
// Phong + diffuse lighting function for g
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
float4 view_light(float4 in_color, float3 light, float4 light_color, float3 view, int3 mask) {
float d = Distance(light) / 100.0f;
d *= d;
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
in_color += diffuse * light_color * 0.5f / d;
if (dot(light, normalize(convert_float3(mask))) > 0.0f)
{
float3 halfwayVector = normalize(normalize(light) + normalize(view));
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
in_color += pow(specTmp, 8.0f) * light_color * 0.5f / d;
}
if (in_color.w > 1.0f){
in_color.xyz *= in_color.w;
}
return in_color;
}
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
*seed = ((*seed) * a) % m;
return(*seed);
}
// =================================== Boolean ray intersection ============================
// =========================================================================================
bool cast_light_intersection_ray(
global char* map,
global int3* map_dim,
float3 ray_dir,
float3 ray_pos,
global float* lights,
global int* light_count
){
float distance_to_light = DistanceBetweenPoints(ray_pos, (float3)(lights[4], lights[5], lights[6]));
//if (distance_to_light > 200.0f){
// return false;
//}
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = { 1, 1, 1 };
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(ray_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
// float3 offset = ;
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t * ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
// for negative values, wrap around the delta_t
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
int3 face_mask = { 0, 0, 0 };
int length_cutoff = 0;
// Andrew Woo's raycasting algo
do {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
if (any(voxel >= *map_dim) ||
any(voxel < 0)) {
return false;
}
// If we hit a voxel
int voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
if (voxel_data != 0)
return true;
if (++length_cutoff > 300)
return false;
//} while (any(isless(intersection_t, (float3)(distance_to_light - 1))));
} while (intersection_t.x < distance_to_light - 1 ||
intersection_t.y < distance_to_light - 1 ||
intersection_t.z < distance_to_light - 1 );
return false;
}
// ====================================== Raycaster entry point =====================================
// ==================================================================================================
constant float4 fog_color = { 0.73f, 0.81f, 0.89f, 0.8f };
constant float4 overshoot_color = { 0.25f, 0.48f, 0.52f, 0.8f };
constant float4 overshoot_color_2 = { 0.25f, 0.1f, 0.52f, 0.8f };
__kernel void raycaster(
global char* map,
global int3* map_dim,
global int2* resolution,
global float3* projection_matrix,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image,
global int* seed_memory,
__read_only image2d_t texture_atlas,
global int2 *atlas_dim,
global int2 *tile_dim
){
// int global_id = x * y;
// Get and set the random seed from seed memory
//int seed = seed_memory[global_id];
//int random_number = rand(&seed);
//seed_memory[global_id] = seed;
// Get the pixel on the viewport, and find the view matrix ray that matches it
//int2 pixel = { global_id % (*resolution).x, global_id / (*resolution).x };
int2 pixel = (int2)(get_global_id(0), get_global_id(1));
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
//if (pixel.x == 960 && pixel.y == 540) {
// write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
// return;
//}
// Pitch
ray_dir = (float3)(
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
ray_dir.y,
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
);
// Yaw
ray_dir = (float3)(
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(*cam_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// offset is how far we are into a voxel, enables sub voxel movement
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
// delta_t * offset = intersection_t
float3 intersection_t = delta_t * ((*cam_pos) - floor(*cam_pos)) * convert_float3(voxel_step);
// for negative values, wrap around the delta_t
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
int dist = 0;
int3 face_mask = { 0, 0, 0 };
int voxel_data = 0;
// Andrew Woo's raycasting algo
do {
// Fancy no branch version of the logic step
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
if (any(voxel >= *map_dim)){
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
return;
}
if (any(voxel < 0)) {
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color_2, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
return;
}
// If we hit a voxel
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
// Debug, add the light position
// if (all(voxel == convert_int3((float3)(lights[4], lights[5], lights[6]-3))))
// voxel_data = 1;
if (voxel_data != 0) {
float4 voxel_color = (float4)(0.0f, 0.0f, 0.0f, 0.001f);
// Determine where on the 2d plane the ray intersected
float3 face_position = (float3)(0);
float2 tile_face_position = (float2)(0);
float3 sign = (float3)(1.0f, 1.0f, 1.0f);
// First determine the percent of the way the ray is towards the next intersection_t
// in relation to the xyz position on the plane
if (face_mask.x == -1) {
sign.x *= -1.0;
float z_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.z;
float y_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.y;
// Since we intersected face x, we know that we are at the face (1.0)
// I think the 1.001f rendering bug is the ray thinking it's within the voxel
// even though it's sitting on the very edge
face_position = (float3)(1.0001f, y_percent, z_percent);
tile_face_position = (float2)(y_percent, z_percent);
}
else if (face_mask.y == -1) {
sign.y *= -1.0;
float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
float z_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.z;
face_position = (float3)(x_percent, 1.0001f, z_percent);
tile_face_position = (float2)(x_percent, z_percent);
}
else if (face_mask.z == -1) {
sign.z *= -1.0;
float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
float y_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.y;
face_position = (float3)(x_percent, y_percent, 1.0001f);
tile_face_position = (float2)(x_percent, y_percent);
}
// Because the raycasting process is agnostic to the quadrant
// it's working in, we need to transpose the sign over to the face positions.
// If we don't it will think that it is always working in the (1, 1, 1) quadrant
// and will just "copy" the quadrant. This includes shadows as they use the face_position
// in order to cast the intersection ray!!
face_position.x = select((float)(face_position.x), (float)(-face_position.x + 1.0f), (int)(ray_dir.x > 0));
tile_face_position.x = select((float)(tile_face_position.x), (float)(-tile_face_position.x + 1.0f), (int)(ray_dir.x < 0));
if (ray_dir.y > 0){
face_position.y = - face_position.y + 1;
} else {
tile_face_position.x = 1.0 - tile_face_position.x;
// We run into the Hairy ball problem, so we need to define
// a special case for the zmask
if (face_mask.z == -1) {
tile_face_position.x = 1.0 - tile_face_position.x;
tile_face_position.y = 1.0 - tile_face_position.y;
}
}
face_position.z = select((float)(face_position.z), (float)(-face_position.z + 1.0f), (int)(ray_dir.z > 0));
tile_face_position.y = select((float)(tile_face_position.y), (float)(-tile_face_position.y + 1.0f), (int)(ray_dir.z < 0));
// if (voxel_data == 6){
//
// //float3 ray_pos = (convert_float3(voxel) + face_position);
// //ray_dir *= sign;
// delta_t = fabs(1.0f / ray_dir);
// intersection_t = delta_t * (face_position * convert_float3(voxel_step));
//
// // for negative values, wrap around the delta_t
// intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
// voxel_step = (int3)(1);//convert_int3(sign);
// voxel_step *= (ray_dir > 0) - (ray_dir < 0);
// continue;
// }
// Now either use the face position to retrieve a texture sample, or
// just a plain color for the voxel color
voxel_color = select((float4)voxel_color,
(float4)(0.0f, 0.239f, 0.419f, 0.0f),
(int4)(voxel_data == 6));
voxel_color = select((float4)read_imagef(
texture_atlas,
convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
convert_int2((float2)(0, 0) * convert_float2(*atlas_dim / *tile_dim))
),
(float4)(0.0f, 0.239f, 0.419f, 0.0f),
(int4)(voxel_data == 5));
voxel_color.w = 0.0f;
if (cast_light_intersection_ray(
map,
map_dim,
normalize((float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel) + face_position)),
(convert_float3(voxel) + face_position),
lights,
light_count
)) {
// If the light ray intersected an object on the way to the light point
write_imagef(image, pixel, white_light(voxel_color, (float3)(1.0f, 1.0f, 1.0f), face_mask));
return;
}
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
write_imagef(
image,
pixel,
view_light(
voxel_color,
(convert_float3(voxel) + face_position) - (float3)(lights[4], lights[5], lights[6]),
(float4)(lights[0], lights[1], lights[2], lights[3]),
(convert_float3(voxel) + face_position) - (*cam_pos),
face_mask * voxel_step
)
);
return;
}
} while (++dist < 700.0f);
//write_imagef(image, pixel, white_light(mix(fog_color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
return;
}