You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

718 lines
28 KiB

/*
Notes:
Keep this is mind when masking the voxel steps, pretty unintuitive behaviour
For scalar types, the equality operators return 0 if false and return 1 if true
For vector types, the equality operators return 0 if false and return -1 if true (i.e. all bits set)
The equality equal (==) returns 0 if one or both arguments are not a number (NaN).
The equality not equal (!=) returns 1 (for scalar source operands) or -1 (for vector source
operands) if one or both arguments are not a number (NaN).
if statements will take 0 as false and any other integer as true
*/
// =========================================================================
// ======================== INITIALIZER CONSTANTS ==========================
__constant float4 zeroed_float4 = {0.0f, 0.0f, 0.0f, 0.0f};
__constant float3 zeroed_float3 = {0.0f, 0.0f, 0.0f};
__constant float2 zeroed_float2 = {0.0f, 0.0f};
__constant int4 zeroed_int4 = {0, 0, 0, 0};
__constant int3 zeroed_int3 = {0, 0, 0};
__constant int2 zeroed_int2 = {0, 0};
// =========================================================================
// ============================ OCTREE CONSTANTS ===========================
// (X, Y, Z) mask for the idx
__constant const uchar idx_set_x_mask = 0x1;
__constant const uchar idx_set_y_mask = 0x2;
__constant const uchar idx_set_z_mask = 0x4;
__constant const uchar3 idx_set_mask = {0x1, 0x2, 0x4};
__constant const uchar mask_8[8] = {
0x1, 0x2, 0x4, 0x8,
0x10, 0x20, 0x40, 0x80
};
// Mask for counting the previous valid bits
__constant const uchar count_mask_8[8] = {
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF
};
// uint64_t manipulation masks
__constant const ulong child_pointer_mask = 0x0000000000007fff;
__constant const ulong far_bit_mask = 0x8000;
__constant const ulong valid_mask = 0xFF0000;
__constant const ulong leaf_mask = 0xFF000000;
__constant const ulong contour_pointer_mask = 0xFFFFFF00000000;
__constant const ulong contour_mask = 0xFF00000000000000;
// =========================================================================
// ========================= RAYCASTER CONSTANTS ===========================
constant float4 fog_color = { 0.0f, 0.0f, 0.0f, 0.0f };
constant float4 overshoot_color = { 0.00f, 0.00f, 0.00f, 0.00f };
constant float4 overshoot_color_2 = { 0.00f, 0.00f, 0.00f, 0.00f };
// =========================================================================
// =========================================================================
#define setting(name) settings_buffer[name]
// =========================================================================
// ========================= HELPER FUNCTIONS ==============================
// Phong + diffuse lighting function for g
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x', y', z'}
float4 view_light(float4 in_color, float3 light, float4 light_color, float3 view, int3 mask) {
if (all(light == zeroed_float3))
return zeroed_float4;
float d = fast_length(light) * 0.01f;
d *= d;
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.1f);
float specular = 0.0f;
if (diffuse > 0.0f) {
// Small dots of light are caused by floating point error
// flipping bits on the face mask and screwing up this calculation
float3 halfwayVector = normalize(normalize(light) + normalize(view));
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
specular = pow(specTmp, 1.0f);
}
in_color += diffuse * light_color + specular * light_color / d;
return in_color;
}
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
*seed = ((*seed) * a) % m;
return(*seed);
}
// =========================================================================
// ========================= OCTREE TRAVERSAL ==============================
struct TraversalState {
int3 sub_oct_pos;
// 0 being the root node
int parent_stack_position;
// Holds child descriptors and their indices in the oct array
ulong parent_stack[8];
ulong parent_stack_index[8];
// 0 being the root node
uchar scale;
uchar idx_stack[8];
// current child descriptor for this node
ulong current_descriptor;
ulong current_descriptor_index;
// The position of the (0,0)th vox in an oct
int3 oct_pos;
// The width in voxels of the current valid masks being tested
int resolution;
// ====== DEBUG =======
char found;
};
struct TraversalState get_oct_vox(
int3 position,
global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer,
global ulong *octree_attachment_buffer,
global ulong *settings_buffer
){
struct TraversalState ts;
ts.current_descriptor_index = setting(OCTREE_ROOT_INDEX);
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
ts.scale = 0;
ts.parent_stack_position = 0;
ts.found = false;
// push the root node to the parent stack
ts.parent_stack[0] = ts.current_descriptor;
ts.parent_stack_index[0] = ts.current_descriptor_index;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = setting(OCTDIM);
ts.resolution = dimension/2;
ts.oct_pos = zeroed_int3;
ts.sub_oct_pos = ts.oct_pos;
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
// No?
// Break
while (dimension > 1) {
// Do the logic steps to find which sub oct we step down into
uchar3 masks = select((uchar3)(0, 0, 0),
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
convert_char3(position >= (int3)(dimension/2) + ts.oct_pos));
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
ts.idx_stack[ts.scale] = masks.x | masks.y | masks.z;
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
ts.oct_pos = ts.sub_oct_pos;
ts.sub_oct_pos += select((int3)(0), (int3)(dimension/2), position >= (int3)(dimension/2) + ts.oct_pos);
int mask_index = ts.idx_stack[ts.scale];
// Check to see if we are on a valid oct / vox
if ((ts.current_descriptor >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((ts.current_descriptor >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
ts.found = true;
// Early exit, dimension and resolution are not updated
return ts;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
ts.scale++;
ts.parent_stack_position++;
dimension /= 2;
ts.resolution /= 2;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount((uchar)(ts.current_descriptor >> 16) & count_mask_8[mask_index]) - 1;
// access the far pointer at which the head points too. Determine it's value, and add
// a count of the valid bits to the index
if (far_bit_mask & octree_descriptor_buffer[ts.current_descriptor_index]) {
int far_pointer_index = ts.current_descriptor_index + (ts.current_descriptor & child_pointer_mask);
ts.current_descriptor_index = octree_descriptor_buffer[far_pointer_index] + count;
}
// access the element at which head points to and then add the specified number of indices
// to get to the correct child descriptor
else {
ts.current_descriptor_index = ts.current_descriptor_index + (ts.current_descriptor & child_pointer_mask) + count;
}
// Set the current descriptor with the calculated descriptor index
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
// And update the data structure with the descriptor and it's index
ts.parent_stack[ts.parent_stack_position] = ts.current_descriptor;
ts.parent_stack_index[ts.parent_stack_position] = ts.current_descriptor_index;
}
else {
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// Parent stack is only populated up to the current descriptors parent.
// So that would be the current voxels grandparent
ts.found = 0;
return ts;
}
}
ts.found = 1;
return ts;
}
// =========================================================================
// ========================= RAYCASTER ENTRY ===============================
__kernel void raycaster(
global char* map,
constant int3* map_dim,
constant int2* resolution,
global float3* projection_matrix,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image,
__read_only image2d_t texture_atlas,
constant int2 *atlas_dim,
constant int2 *tile_dim,
global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer,
global ulong *octree_attachment_buffer,
global ulong *settings_buffer
){
// Get the pixel on the viewport, and find the view matrix ray that matches it
int2 pixel = (int2)(get_global_id(0), get_global_id(1));
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
// Pitch
ray_dir = (float3)(
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
ray_dir.y,
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
);
// Yaw
ray_dir = (float3)(
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z
);
if (any(ray_dir == zeroed_float3))
return;
// Setup the voxel step based on what direction the ray is pointing
// Correct opencl for being stupid and giving us negative for true
int3 voxel_step = (-1, -1, -1) * ((ray_dir > 0) - (ray_dir < 0));
// Setup the voxel coords from the camera origin
// rtn = round towards negative
int3 voxel = convert_int3_rtn(*cam_pos);
int3 prev_voxel = voxel;
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ. We want to 'boost' the intersection_t start point up to
// the offset, so we get the -(difference) between the int voxel position and the
// float camera position.
float3 offset = delta_t * ((*cam_pos) - floor(*cam_pos));
// Now we apply the inverse of the ray sign. This gives us a negative
// offset for positive values and vis versa.
float3 intersection_t = offset * -convert_float3(voxel_step);
// For negative ray directions the positive value is the correct initial offset
// For positive rays we now just have to add the delta_t to the negative offset
// and that will give us the correct positive intersection_t. Don't forget to
// correct the stupid -1==true
intersection_t += delta_t * -1 * convert_float3(isless(intersection_t, 0));
int distance_traveled = 0;
int max_distance = 80;
uint bounce_count = 0;
int3 face_mask = { 0, 0, 0 };
int voxel_data = 0;
float3 face_position = zeroed_float3;
float4 voxel_color= zeroed_float4;
float2 tile_face_position = zeroed_float2;
float3 sign = zeroed_float3;
float4 color_accumulator = zeroed_float4;
float fog_distance = 0.0f;
bool shadow_ray = false;
int vox_dim = setting(OCTDIM);
int failsafe = 0;
struct TraversalState traversal_state;
traversal_state = get_oct_vox(
voxel,
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer,
settings_buffer);
int jump_power = traversal_state.resolution;
int prev_jump_power = jump_power;
int3 last_oct_pos = (0);
intersection_t +=
convert_float3((traversal_state.sub_oct_pos - voxel.xyz) * traversal_state.resolution/2);
// Andrew Woo's raycasting algo
while (distance_traveled < max_distance && bounce_count < 2) {
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
prev_jump_power = jump_power;
prev_voxel = voxel;
// not working, wish I would have commented!!!
voxel.xyz += voxel_step.xyz * face_mask.xyz * convert_int3((traversal_state.sub_oct_pos - voxel.xyz) + traversal_state.resolution);
//voxel.xyz += voxel_step.xyz * face_mask.xyz * traversal_state.resolution;
// Test for out of bounds contions, add fog
if (any(voxel >= *map_dim) || any(voxel < 0)){
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz;
color_accumulator = mix(fog_color, (1.0f,0.3f,0.3f,1.0f), 1.0f) - max(distance_traveled / 100.0f, 0.0f);
color_accumulator.w = 1.0f;
break;
}
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
uchar this_face_mask = 0;
uchar3 tmp = select((uchar3)(0), (uchar3)(idx_set_x_mask,idx_set_y_mask,idx_set_z_mask), convert_uchar3(face_mask == (1,1,1)));
this_face_mask = tmp.x | tmp.y | tmp.z;
// and increment the idx in the idx stack
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
// Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
uchar mask_index = traversal_state.idx_stack[traversal_state.scale];
// Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
// Check to see if the idx increased or decreased
// If it decreased, thus invalid
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
bool is_valid = select(false,
(bool)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index],
mask_index > prev_val);
while ((mask_index < prev_val || !is_valid) && traversal_state.scale >= 1) {
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0;
// Clear and pop the parent stack
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
// Scale is now set to the oct above. Be wary of this
jump_power *= 2;
traversal_state.scale--;
traversal_state.parent_stack_position--;
// Keep track of the 0th edge of our current oct, while keeping
// track of the sub_oct we're coming from
//traversal_state.sub_oct_pos = traversal_state.oct_pos;
// select take the dumb MSB truth value for vector types
// so we just gotta do this component wise, dumb
traversal_state.oct_pos.x -= select(0, jump_power, (prev_val & idx_set_x_mask));
traversal_state.oct_pos.y -= select(0, jump_power, (prev_val & idx_set_y_mask));
traversal_state.oct_pos.z -= select(0, jump_power, (prev_val & idx_set_z_mask));
// Set the current CD to the one on top of the stack
traversal_state.current_descriptor =
traversal_state.parent_stack[traversal_state.parent_stack_position];
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale];
// Apply the face mask to the new idx for the while check
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
// Get the mask index of the new idx and check the valid status
mask_index = traversal_state.idx_stack[traversal_state.scale];
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
}
// At this point parent_stack[position] is at the CD of an oct with a
// valid oct at the leaf indicated by the current idx in the idx stack scale
// While we haven't bottomed out and the oct we're looking at is valid
while((jump_power > 1 || jump_power == 8 ) && is_valid) {
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
// If this CD had the far bit set
if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
// access the far point at which the head points too. Determine it's value, and add
// the count of the valid bits in the current CD to the index
uint far_pointer_index =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count;
}
// If this CD doesn't have the far bit set, access the element at which head points to
// and then add the specified number of indices to get to the correct child descriptor
else {
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
}
// Now that we have the index set we can increase our parent stack position to the next level and
// retrieve the value of its CD
traversal_state.parent_stack_position++;
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
// Unlike the single shot DFS, we inherited a valid idx from the upwards traversal. So now we must
// set the idx at the tail end of this for loop
// Do the logic steps to find which sub oct we step down into
// Do the logic steps to find which sub oct we step down into
uchar3 masks = select((uchar3)(0, 0, 0),
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
convert_char3(voxel >= (int3)(jump_power) + traversal_state.oct_pos));
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z;
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
traversal_state.oct_pos += select((int3)(0), (int3)(jump_power), voxel >= (int3)(jump_power) + traversal_state.oct_pos);
jump_power /= 2;
// Update the mask index with the new voxel we walked down to, and then check it's valid status
mask_index = traversal_state.idx_stack[traversal_state.scale];
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
traversal_state.scale++;
}
traversal_state.sub_oct_pos = traversal_state.oct_pos;
uchar3 masks = select((uchar3)(0, 0, 0),
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
convert_char3(voxel >= (int3)(jump_power) + traversal_state.oct_pos));
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z;
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
traversal_state.sub_oct_pos += select((int3)(0), (int3)(jump_power), voxel >= (int3)(jump_power) + traversal_state.oct_pos);
// Add the delta for the jump power and the traversed face
intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
// Get the other faces
//int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1));
// Get the amount of times we need to multiply the delta t to get to our face
//uint3 multiplier = convert_uint3(abs(traversal_state.oct_pos - last_oct_pos) * (1.0f/prev_jump_power));
//last_oct_pos = traversal_state.oct_pos;
// Go back to the beginning intersection t's for the non traversed faces
//intersection_t -= delta_t * prev_jump_power * convert_float3(other_faces.xyz);
// add back the intersection for our current jump power
//intersection_t += delta_t * convert_float3(multiplier) * jump_power * fabs(convert_float3(other_faces.xyz));
// if (traversal_state.scale == 1 && is_valid){
// voxel_data = 5;
// //voxel.xyz -= voxel_step.xyz * face_mask.xyz;
// color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
// color_accumulator.w *= 4;
// break;
// }
//voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
// =======================================================================
//
// =======================================================================
// else {
//
// // True will result in a -1, e.g (0, 0, -1) so negate it to positive
// face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
// intersection_t += delta_t * convert_float3(face_mask.xyz);
// voxel.xyz += voxel_step.xyz * face_mask.xyz;
//
// // Test for out of bounds contions, add fog
// if (any(voxel >= *map_dim) || any(voxel < 0)){
// voxel.xyz -= voxel_step.xyz * face_mask.xyz;
// color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
// color_accumulator.w *= 4;
// break;
// }
// voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
// }
// =======================================================================
//
// =======================================================================
// if (voxel_data == 5 || voxel_data == 6) {
//
// // Determine where on the 2d plane the ray intersected
// face_position = zeroed_float3;
// tile_face_position = zeroed_float2;
//
// // Collect the sign of the face hit for ray redirection
// sign = (1.0f, 1.0f, 1.0f);
//
// // First determine the percent of the way the ray is towards the next intersection_t
// // in relation to the xyz position on the plane
// if (face_mask.x == 1) {
//
// sign.x *= -1.0;
//
// // the next intersection for this plane - the last intersection of the passed plane / delta of this plane
// // basically finds how far in on the other 2 axis we are when the ray traversed the plane
// float z_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.z;
// float y_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.y;
//
// // Since we intersected face x, we know that we are at the face (1.0)
// // I think the 1.001f rendering bug is the ray thinking it's within the voxel
// // even though it's sitting on the very edge
// face_position = (float3)(1.00001f, y_percent, z_percent);
// tile_face_position = face_position.yz;
// }
// else if (face_mask.y == 1) {
//
// sign.y *= -1.0;
// float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
// float z_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.z;
// face_position = (float3)(x_percent, 1.00001f, z_percent);
// tile_face_position = face_position.xz;
// }
//
// else if (face_mask.z == 1) {
//
// sign.z *= -1.0;
// float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
// float y_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.y;
// face_position = (float3)(x_percent, y_percent, 1.00001f);
// tile_face_position = face_position.xy;
//
// }
//
// // Because the raycasting process is agnostic to the quadrant
// // it's working in, we need to transpose the sign over to the face positions.
// // If we don't it will think that it is always working in the (1, 1, 1) quadrant
// // and will just "copy" the quadrant. This includes shadows as they use the face_position
// // in order to cast the intersection ray!!
//
// face_position.x = select((face_position.x), (-face_position.x + 1.0f), (int)(ray_dir.x > 0));
// tile_face_position.x = select((tile_face_position.x), (-tile_face_position.x + 1.0f), (int)(ray_dir.x < 0));
//
// if (ray_dir.y > 0){
// face_position.y = -face_position.y + 1;
// } else {
// tile_face_position.x = 1.0 - tile_face_position.x;
//
// // We run into the Hairy ball problem, so we need to define
// // a special case for the zmask
// if (face_mask.z == 1) {
// tile_face_position.x = 1.0f - tile_face_position.x;
// tile_face_position.y = 1.0f - tile_face_position.y;
// }
// }
//
// face_position.z = select((face_position.z), (-face_position.z + 1.0f), -1 * (int)(ray_dir.z > 0));
// tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), -1 * (int)(ray_dir.z < 0));
//
// // Now we detect what type of of voxel we intersected and decide whether
// // to bend the ray, send out a light intersection ray, or add texture color
//
// // TEXTURE HIT + SHADOW RAY REDIRECTION
// if (voxel_data == 5 && !shadow_ray){
//
// shadow_ray = true;
// voxel_color.xyz += (float3)read_imagef(
// texture_atlas,
// convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
// convert_int2((float2)(5, 0) * convert_float2(*atlas_dim / *tile_dim))
// ).xyz/2;
//
// color_accumulator = view_light(
// voxel_color,
// (convert_float3(voxel) + face_position) - (float3)(lights[4], lights[5], lights[6]),
// (float4)(lights[0], lights[1], lights[2], lights[3]),
// (convert_float3(voxel) + face_position) - (*cam_pos),
// face_mask * voxel_step
// );
//
// fog_distance = distance_traveled;
// max_distance = distance_traveled + fast_distance(convert_float3(voxel), (float3)(lights[4], lights[5], lights[6]));
//
// float3 hit_pos = convert_float3(voxel) + face_position;
// ray_dir = normalize((float3)(lights[4], lights[5], lights[6]) - hit_pos);
// if (any(ray_dir == zeroed_float3))
// return;
//
// voxel -= voxel_step * face_mask;
// voxel_step = ( -1, -1, -1 ) * ((ray_dir > 0) - (ray_dir < 0));
//
// delta_t = fabs(1.0f / ray_dir);
// intersection_t = delta_t * ((hit_pos) - floor(hit_pos)) * convert_float3(voxel_step);
// intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
//
// // REFLECTION
// } else if (voxel_data == 6 && !shadow_ray) {
//
// voxel_color.xyz += (float3)read_imagef(
// texture_atlas,
// convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
// convert_int2((float2)(3, 4) * convert_float2(*atlas_dim / *tile_dim))
// ).xyz/4;
//
// voxel_color.w -= 0.0f;
//
// float3 hit_pos = convert_float3(voxel) + face_position;
// ray_dir *= sign;
// if (any(ray_dir == zeroed_float3))
// return;
//
// voxel -= voxel_step * face_mask;
// voxel_step = ( -1, -1, -1 ) * (ray_dir > 0) - (ray_dir < 0);
//
// delta_t = fabs(1.0f / ray_dir);
// intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step);
// intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
//
// bounce_count += 1;
//
// // SHADOW RAY HIT
// } else {
// color_accumulator.w = 0.1f;
// break;
// }
// }
// At the bottom of the while loop, add one to the distance ticker
distance_traveled++;
}
color_accumulator = mix(fog_color, color_accumulator, 1.0f - max(fog_distance / 700.0f, 0.0f));
write_imagef(
image,
pixel,
color_accumulator
);
return;
}