/*
Notes:
Keep this is mind when masking the voxel steps, pretty unintuitive behaviour
For scalar types, the equality operators return 0 if false and return 1 if true
For vector types, the equality operators return 0 if false and return -1 if true ( i.e. all bits set )
The equality equal ( == ) returns 0 if one or both arguments are not a number ( NaN ) .
The equality not equal ( != ) returns 1 ( for scalar source operands ) or -1 ( for vector source
operands ) if one or both arguments are not a number ( NaN ) .
if statements will take 0 as false and any other integer as true
*/
// =========================================================================
// ======================== INITIALIZER CONSTANTS ==========================
__constant float4 zeroed_float4 = {0.0f, 0.0f, 0.0f, 0.0f} ;
__constant float3 zeroed_float3 = {0.0f, 0.0f, 0.0f} ;
__constant float2 zeroed_float2 = {0.0f, 0.0f} ;
__constant int4 zeroed_int4 = {0, 0 , 0 , 0} ;
__constant int3 zeroed_int3 = {0, 0 , 0} ;
__constant int2 zeroed_int2 = {0, 0} ;
// =========================================================================
// ============================ OCTREE CONSTANTS ===========================
// ( X, Y, Z ) mask for the idx
__constant const uchar idx_set_x_mask = 0x1 ;
__constant const uchar idx_set_y_mask = 0x2 ;
__constant const uchar idx_set_z_mask = 0x4 ;
__constant const uchar3 idx_set_mask = {0x1, 0x2, 0x4} ;
__constant const uchar mask_8[8] = {
0x1, 0x2, 0x4, 0x8,
0x10, 0x20, 0x40, 0x80
} ;
// Mask for counting the previous valid bits
__constant const uchar count_mask_8[8] = {
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF
} ;
// uint64_t manipulation masks
__constant const ulong child_pointer_mask = 0x0000000000007fff ;
__constant const ulong far_bit_mask = 0x8000 ;
__constant const ulong valid_mask = 0xFF0000 ;
__constant const ulong leaf_mask = 0xFF000000 ;
__constant const ulong contour_pointer_mask = 0xFFFFFF00000000 ;
__constant const ulong contour_mask = 0xFF00000000000000 ;
// =========================================================================
// ========================= RAYCASTER CONSTANTS ===========================
constant float4 fog_color = { 0.0f, 0.0f, 0.0f, 0.0f } ;
constant float4 overshoot_color = { 0.00f, 0.00f, 0.00f, 0.00f } ;
constant float4 overshoot_color_2 = { 0.00f, 0.00f, 0.00f, 0.00f } ;
// =========================================================================
// =========================================================================
# define setting ( name ) settings_buffer[name]
// =========================================================================
// ========================= HELPER FUNCTIONS ==============================
// Phong + diffuse lighting function for g
// 0 1 2 3 4 5 6 7 8 9
// {r, g, b, i, x, y, z, x ', y ', z '}
float4 view_light ( float4 in_color, float3 light, float4 light_color, float3 view, int3 mask ) {
if ( all ( light == zeroed_float3 ) )
return zeroed_float4 ;
float d = fast_length ( light ) * 0.01f ;
d *= d ;
float diffuse = max ( dot ( normalize ( convert_float3 ( mask ) ) , normalize ( light ) ) , 0.1f ) ;
float specular = 0.0f ;
if ( diffuse > 0.0f ) {
// Small dots of light are caused by floating point error
// flipping bits on the face mask and screwing up this calculation
float3 halfwayVector = normalize ( normalize ( light ) + normalize ( view ) ) ;
float specTmp = max ( dot ( normalize ( convert_float3 ( mask ) ) , halfwayVector ) , 0.0f ) ;
specular = pow ( specTmp, 1.0f ) ;
}
in_color += diffuse * light_color + specular * light_color / d ;
return in_color ;
}
int rand ( int* seed ) // 1 <= *seed < m
{
int const a = 16807 ; //ie 7**5
int const m = 2147483647 ; //ie 2**31-1
*seed = ( ( *seed ) * a ) % m ;
return ( *seed ) ;
}
// =========================================================================
// ========================= OCTREE TRAVERSAL ==============================
struct TraversalState {
int3 sub_oct_pos ;
// 0 being the root node
int parent_stack_position ;
// Holds child descriptors and their indices in the oct array
ulong parent_stack[8] ;
ulong parent_stack_index[8] ;
// 0 being the root node
uchar scale ;
uchar idx_stack[8] ;
// current child descriptor for this node
ulong current_descriptor ;
ulong current_descriptor_index ;
// The position of the ( 0 , 0 ) th vox in an oct
int3 oct_pos ;
// The width in voxels of the current valid masks being tested
int resolution ;
// ====== DEBUG =======
char found ;
} ;
struct TraversalState get_oct_vox (
int3 position,
global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer,
global ulong *octree_attachment_buffer,
global ulong *settings_buffer
) {
struct TraversalState ts ;
ts.current_descriptor_index = setting ( OCTREE_ROOT_INDEX ) ;
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index] ;
ts.scale = 0 ;
ts.parent_stack_position = 0 ;
ts.found = false ;
// push the root node to the parent stack
ts.parent_stack[0] = ts.current_descriptor ;
ts.parent_stack_index[0] = ts.current_descriptor_index ;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = setting ( OCTDIM ) ;
ts.resolution = dimension/2 ;
ts.oct_pos = zeroed_int3 ;
ts.sub_oct_pos = ts.oct_pos ;
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
// No?
// Break
while ( dimension > 1 ) {
// Do the logic steps to find which sub oct we step down into
uchar3 thing = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
convert_char3 ( position >= ( int3 ) ( dimension/2 ) + ts.oct_pos ) ) ;
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
ts.idx_stack[ts.scale] = thing.x | thing.y | thing.z ;
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
ts.oct_pos = ts.sub_oct_pos ;
ts.sub_oct_pos += select ( ( int3 ) ( 0 ) , ( int3 ) ( dimension/2 ) , position >= ( int3 ) ( dimension/2 ) + ts.oct_pos ) ;
int mask_index = ts.idx_stack[ts.scale] ;
// Check to see if we are on a valid oct / vox
if ( ( ts.current_descriptor >> 16 ) & mask_8[mask_index] ) {
// Check to see if it is a leaf
if ( ( ts.current_descriptor >> 24 ) & mask_8[mask_index] ) {
// If it is, then we cannot traverse further as CP 's won 't have been generated
ts.found = true ;
// Early exit, dimension and resolution are not updated
return ts ;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
ts.scale++ ;
ts.parent_stack_position++ ;
dimension /= 2 ;
ts.resolution /= 2 ;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount ( ( uchar ) ( ts.current_descriptor >> 16 ) & count_mask_8[mask_index] ) - 1 ;
// access the far pointer at which the head points too. Determine it 's value, and add
// a count of the valid bits to the index
if ( far_bit_mask & octree_descriptor_buffer[ts.current_descriptor_index] ) {
int far_pointer_index = ts.current_descriptor_index + ( ts.current_descriptor & child_pointer_mask ) ;
ts.current_descriptor_index = octree_descriptor_buffer[far_pointer_index] + count ;
}
// access the element at which head points to and then add the specified number of indices
// to get to the correct child descriptor
else {
ts.current_descriptor_index = ts.current_descriptor_index + ( ts.current_descriptor & child_pointer_mask ) + count ;
}
// Set the current descriptor with the calculated descriptor index
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index] ;
// And update the data structure with the descriptor and it 's index
ts.parent_stack[ts.parent_stack_position] = ts.current_descriptor ;
ts.parent_stack_index[ts.parent_stack_position] = ts.current_descriptor_index ;
}
else {
// If the oct was not valid, then no CP 's exists any further
// This implicitly says that if it 's non-valid then it must be a leaf!!
// Parent stack is only populated up to the current descriptors parent.
// So that would be the current voxels grandparent
ts.found = 0 ;
return ts ;
}
}
ts.found = 1 ;
return ts ;
}
// =========================================================================
// ========================= RAYCASTER ENTRY ===============================
__kernel void raycaster (
global char* map,
constant int3* map_dim,
constant int2* resolution,
global float3* projection_matrix,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image,
__read_only image2d_t texture_atlas,
constant int2 *atlas_dim,
constant int2 *tile_dim,
global ulong *octree_descriptor_buffer,
global uint *octree_attachment_lookup_buffer,
global ulong *octree_attachment_buffer,
global ulong *settings_buffer
) {
// Get the pixel on the viewport, and find the view matrix ray that matches it
int2 pixel = ( int2 ) ( get_global_id ( 0 ) , get_global_id ( 1 ) ) ;
float3 ray_dir = projection_matrix[pixel.x + ( *resolution ) . x * pixel.y] ;
// Pitch
ray_dir = ( float3 ) (
ray_dir.z * sin ( ( *cam_dir ) . x ) + ray_dir.x * cos ( ( *cam_dir ) . x ) ,
ray_dir.y,
ray_dir.z * cos ( ( *cam_dir ) . x ) - ray_dir.x * sin ( ( *cam_dir ) . x )
) ;
// Yaw
ray_dir = ( float3 ) (
ray_dir.x * cos ( ( *cam_dir ) . y ) - ray_dir.y * sin ( ( *cam_dir ) . y ) ,
ray_dir.x * sin ( ( *cam_dir ) . y ) + ray_dir.y * cos ( ( *cam_dir ) . y ) ,
ray_dir.z
) ;
if ( any ( ray_dir == zeroed_float3 ) )
return ;
// Setup the voxel step based on what direction the ray is pointing
// Correct opencl for being stupid and giving us negative for true
int3 voxel_step = ( -1 , -1 , -1 ) * ( ( ray_dir > 0 ) - ( ray_dir < 0 ) ) ;
// Setup the voxel coords from the camera origin
// rtn = round towards negative
int3 voxel = convert_int3_rtn ( *cam_pos ) ;
int3 prev_voxel = voxel ;
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs ( 1.0f / ray_dir ) ;
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ. We want to 'boost ' the intersection_t start point up to
// the offset, so we get the - ( difference ) between the int voxel position and the
// float camera position.
float3 offset = delta_t * ( ( *cam_pos ) - floor ( *cam_pos ) ) ;
// Now we apply the inverse of the ray sign. This gives us a negative
// offset for positive values and vis versa.
float3 intersection_t = offset * -convert_float3 ( voxel_step ) ;
// For negative ray directions the positive value is the correct initial offset
// For positive rays we now just have to add the delta_t to the negative offset
// and that will give us the correct positive intersection_t. Don 't forget to
// correct the stupid -1==true
intersection_t += delta_t * -1 * convert_float3 ( isless ( intersection_t, 0 ) ) ;
int distance_traveled = 0 ;
int max_distance = 20 ;
uint bounce_count = 0 ;
int3 face_mask = { 0 , 0 , 0 } ;
int voxel_data = 0 ;
float3 face_position = zeroed_float3 ;
float4 voxel_color= zeroed_float4 ;
float2 tile_face_position = zeroed_float2 ;
float3 sign = zeroed_float3 ;
float4 color_accumulator = zeroed_float4 ;
float fog_distance = 0.0f ;
bool shadow_ray = false ;
int vox_dim = setting ( OCTDIM ) ;
int failsafe = 0 ;
struct TraversalState traversal_state ;
traversal_state = get_oct_vox (
voxel,
octree_descriptor_buffer,
octree_attachment_lookup_buffer,
octree_attachment_buffer,
settings_buffer ) ;
int jump_power = traversal_state.resolution ;
int prev_jump_power = jump_power ;
int3 last_oct_pos = ( 0 ) ;
intersection_t +=
convert_float3 ( ( traversal_state.sub_oct_pos - voxel.xyz ) * traversal_state.resolution/2 ) ;
// Andrew Woo 's raycasting algo
while ( distance_traveled < max_distance && bounce_count < 2 ) {
if ( setting ( OCTENABLED ) == 0 ) {
// True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
prev_jump_power = jump_power ;
prev_voxel = voxel ;
// not working, wish I would have commented!!!
voxel.xyz += voxel_step.xyz * face_mask.xyz * convert_int3 ( ( traversal_state.sub_oct_pos - voxel.xyz ) + traversal_state.resolution ) ;
//voxel.xyz += voxel_step.xyz * face_mask.xyz * traversal_state.resolution ;
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz ;
color_accumulator = mix ( fog_color, ( 1.0f,0.3f,0.3f,1.0f ) , 1.0f ) - max ( distance_traveled / 8.0f, 0.0f ) ;
color_accumulator.w = 1.0f ;
break ;
}
uchar prev_val = traversal_state.idx_stack[traversal_state.scale] ;
uchar this_face_mask = 0 ;
// Check the voxel face that we traversed
uchar3 tmp = select ( ( uchar3 ) ( 0 ) , ( uchar3 ) ( idx_set_x_mask,idx_set_y_mask,idx_set_z_mask ) , convert_uchar3 ( face_mask == ( 1 , 1 , 1 ) ) ) ;
this_face_mask = tmp.x | tmp.y | tmp.z ;
// and increment the idx in the idx stack
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
// Mask index is the 1D index 'd value of the idx for interaction with the valid / leaf masks
uchar mask_index = traversal_state.idx_stack[traversal_state.scale] ;
// Whether or not the next oct we want to enter in the current CD 's valid mask is 1 or 0
// Check to see if the idx increased or decreased
// If it decreased, thus invalid
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
bool is_valid = select ( false,
( bool ) ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index],
mask_index > prev_val ) ;
failsafe = 0 ;
while ( ( mask_index < prev_val | | !is_valid ) && traversal_state.scale >= 1 ) {
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0 ;
// Clear and pop the parent stack
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0 ;
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0 ;
// Scale is now set to the oct above. Be wary of this
jump_power *= 2 ;
traversal_state.scale-- ;
traversal_state.parent_stack_position-- ;
// Keep track of the 0th edge of our current oct, while keeping
// track of the sub_oct we 're coming from
//traversal_state.sub_oct_pos = traversal_state.oct_pos ;
// select take the dumb MSB truth value for vector types
// so we just gotta do this component wise, dumb
traversal_state.oct_pos.x -= select ( 0 , jump_power, ( prev_val & idx_set_x_mask ) ) ;
traversal_state.oct_pos.y -= select ( 0 , jump_power, ( prev_val & idx_set_y_mask ) ) ;
traversal_state.oct_pos.z -= select ( 0 , jump_power, ( prev_val & idx_set_z_mask ) ) ;
// Set the current CD to the one on top of the stack
traversal_state.current_descriptor =
traversal_state.parent_stack[traversal_state.parent_stack_position] ;
// Update the prev_val for our new idx
prev_val = traversal_state.idx_stack[traversal_state.scale] ;
// Apply the face mask to the new idx for the while check
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask ;
// Get the mask index of the new idx and check the valid status
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
failsafe++ ;
if ( failsafe > 10 )
break ;
}
// At this point parent_stack[position] is at the CD of an oct with a
// valid oct at the leaf indicated by the current idx in the idx stack scale
// While we haven 't bottomed out and the oct we 're looking at is valid
failsafe = 0 ;
if ( jump_power == 8 && is_valid )
failsafe = 5 ;
if ( jump_power > 1 && is_valid )
failsafe = 1 ;
while ( jump_power > 1 && is_valid ) {
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = popcount ( ( uchar ) ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & count_mask_8[mask_index] ) - 1 ;
// If this CD had the far bit set
if ( far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]] ) {
// access the far point at which the head points too. Determine it 's value, and add
// the count of the valid bits in the current CD to the index
uint far_pointer_index =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
( traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask ) ; // the relative prt to the far ptr
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count ;
}
// If this CD doesn 't have the far bit set, access the element at which head points to
// and then add the specified number of indices to get to the correct child descriptor
else {
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
( traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask ) + count ; // The relative dist + the number of bits that were valid
}
// Now that we have the index set we can increase our parent stack position to the next level and
// retrieve the value of its CD
traversal_state.parent_stack_position++ ;
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]] ;
// Unlike the single shot DFS, we inherited a valid idx from the upwards traversal. So now we must
// set the idx at the tail end of this for loop
// Do the logic steps to find which sub oct we step down into
uchar3 masks = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
convert_char3 ( voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ) ;
traversal_state.oct_pos += select ( ( int3 ) ( 0 ) , ( int3 ) ( jump_power ) , voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ;
jump_power /= 2 ;
// Update the mask index with the new voxel we walked down to, and then check it 's valid status
mask_index = traversal_state.idx_stack[traversal_state.scale] ;
is_valid = ( traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16 ) & mask_8[mask_index] ;
traversal_state.scale++ ;
failsafe++ ;
if ( failsafe > 10 )
break ;
}
traversal_state.sub_oct_pos = traversal_state.oct_pos ;
uchar3 masks = select ( ( uchar3 ) ( 0 , 0 , 0 ) ,
( uchar3 ) ( idx_set_x_mask, idx_set_y_mask, idx_set_z_mask ) ,
convert_char3 ( voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ) ;
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z ;
// Set our voxel position to the ( 0 , 0 ) of the correct oct by rerunning the logic step
traversal_state.sub_oct_pos += select ( ( int3 ) ( 0 ) , ( int3 ) ( jump_power ) , voxel >= ( int3 ) ( jump_power ) + traversal_state.oct_pos ) ;
traversal_state = traversal_state ;
// Add the delta for the jump power and the traversed face
intersection_t += delta_t * jump_power * fabs ( convert_float3 ( face_mask.xyz ) ) ;
// Get the other faces
//int3 other_faces = select ( ( int3 ) ( 1 , 1 , 1 ) , ( int3 ) ( 0 , 0 , 0 ) , ( int3 ) ( face_mask == 1 ) ) ;
// Get the amount of times we need to multiply the delta t to get to our face
//uint3 multiplier = convert_uint3 ( abs ( traversal_state.oct_pos - last_oct_pos ) * ( 1.0f/prev_jump_power ) ) ;
//last_oct_pos = traversal_state.oct_pos ;
// Go back to the beginning intersection t 's for the non traversed faces
//intersection_t -= delta_t * prev_jump_power * convert_float3 ( other_faces.xyz ) ;
// add back the intersection for our current jump power
//intersection_t += delta_t * convert_float3 ( multiplier ) * jump_power * fabs ( convert_float3 ( other_faces.xyz ) ) ;
// if ( traversal_state.scale == 1 && is_valid ) {
// voxel_data = 5 ;
// //voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
// color_accumulator = mix ( ( 1.0f, 1.0f, 1.0f, 1.0f ) , ( 1.0f, 1.0f, 1.0f, 1.0f ) , 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
// color_accumulator.w *= 4 ;
// break ;
// }
//voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
}
// =======================================================================
//
// =======================================================================
else {
// True will result in a -1 , e.g ( 0 , 0 , -1 ) so negate it to positive
face_mask = -1 * ( intersection_t.xyz <= min ( intersection_t.yzx, intersection_t.zxy ) ) ;
intersection_t += delta_t * convert_float3 ( face_mask.xyz ) ;
voxel.xyz += voxel_step.xyz * face_mask.xyz ;
// Test for out of bounds contions, add fog
if ( any ( voxel >= *map_dim ) | | any ( voxel < 0 ) ) {
voxel.xyz -= voxel_step.xyz * face_mask.xyz ;
color_accumulator = mix ( fog_color, voxel_color, 1.0f - max ( distance_traveled / 700.0f, 0.0f ) ) ;
color_accumulator.w *= 4 ;
break ;
}
voxel_data = map[voxel.x + ( *map_dim ) . x * ( voxel.y + ( *map_dim ) . z * ( voxel.z ) ) ] ;
}
// =======================================================================
//
// =======================================================================
if ( voxel_data == 5 | | voxel_data == 6 ) {
// Determine where on the 2d plane the ray intersected
face_position = zeroed_float3 ;
tile_face_position = zeroed_float2 ;
// Collect the sign of the face hit for ray redirection
sign = ( 1.0f, 1.0f, 1.0f ) ;
// First determine the percent of the way the ray is towards the next intersection_t
// in relation to the xyz position on the plane
if ( face_mask.x == 1 ) {
sign.x *= -1.0 ;
// the next intersection for this plane - the last intersection of the passed plane / delta of this plane
// basically finds how far in on the other 2 axis we are when the ray traversed the plane
float z_percent = ( intersection_t.z - ( intersection_t.x - delta_t.x ) ) / delta_t.z ;
float y_percent = ( intersection_t.y - ( intersection_t.x - delta_t.x ) ) / delta_t.y ;
// Since we intersected face x, we know that we are at the face ( 1.0 )
// I think the 1.001f rendering bug is the ray thinking it 's within the voxel
// even though it 's sitting on the very edge
face_position = ( float3 ) ( 1.00001f, y_percent, z_percent ) ;
tile_face_position = face_position.yz ;
}
else if ( face_mask.y == 1 ) {
sign.y *= -1.0 ;
float x_percent = ( intersection_t.x - ( intersection_t.y - delta_t.y ) ) / delta_t.x ;
float z_percent = ( intersection_t.z - ( intersection_t.y - delta_t.y ) ) / delta_t.z ;
face_position = ( float3 ) ( x_percent, 1.00001f, z_percent ) ;
tile_face_position = face_position.xz ;
}
else if ( face_mask.z == 1 ) {
sign.z *= -1.0 ;
float x_percent = ( intersection_t.x - ( intersection_t.z - delta_t.z ) ) / delta_t.x ;
float y_percent = ( intersection_t.y - ( intersection_t.z - delta_t.z ) ) / delta_t.y ;
face_position = ( float3 ) ( x_percent, y_percent, 1.00001f ) ;
tile_face_position = face_position.xy ;
}
// Because the raycasting process is agnostic to the quadrant
// it 's working in, we need to transpose the sign over to the face positions.
// If we don 't it will think that it is always working in the ( 1 , 1 , 1 ) quadrant
// and will just "copy" the quadrant. This includes shadows as they use the face_position
// in order to cast the intersection ray!!
face_position.x = select ( ( face_position.x ) , ( -face_position.x + 1.0f ) , ( int ) ( ray_dir.x > 0 ) ) ;
tile_face_position.x = select ( ( tile_face_position.x ) , ( -tile_face_position.x + 1.0f ) , ( int ) ( ray_dir.x < 0 ) ) ;
if ( ray_dir.y > 0 ) {
face_position.y = -face_position.y + 1 ;
} else {
tile_face_position.x = 1.0 - tile_face_position.x ;
// We run into the Hairy ball problem, so we need to define
// a special case for the zmask
if ( face_mask.z == 1 ) {
tile_face_position.x = 1.0f - tile_face_position.x ;
tile_face_position.y = 1.0f - tile_face_position.y ;
}
}
face_position.z = select ( ( face_position.z ) , ( -face_position.z + 1.0f ) , -1 * ( int ) ( ray_dir.z > 0 ) ) ;
tile_face_position.y = select ( ( tile_face_position.y ) , ( -tile_face_position.y + 1.0f ) , -1 * ( int ) ( ray_dir.z < 0 ) ) ;
// Now we detect what type of of voxel we intersected and decide whether
// to bend the ray, send out a light intersection ray, or add texture color
// TEXTURE HIT + SHADOW RAY REDIRECTION
if ( voxel_data == 5 && !shadow_ray ) {
shadow_ray = true ;
voxel_color.xyz += ( float3 ) read_imagef (
texture_atlas,
convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
convert_int2 ( ( float2 ) ( 5 , 0 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
) . xyz/2 ;
color_accumulator = view_light (
voxel_color,
( convert_float3 ( voxel ) + face_position ) - ( float3 ) ( lights[4], lights[5], lights[6] ) ,
( float4 ) ( lights[0], lights[1], lights[2], lights[3] ) ,
( convert_float3 ( voxel ) + face_position ) - ( *cam_pos ) ,
face_mask * voxel_step
) ;
fog_distance = distance_traveled ;
max_distance = distance_traveled + fast_distance ( convert_float3 ( voxel ) , ( float3 ) ( lights[4], lights[5], lights[6] ) ) ;
float3 hit_pos = convert_float3 ( voxel ) + face_position ;
ray_dir = normalize ( ( float3 ) ( lights[4], lights[5], lights[6] ) - hit_pos ) ;
if ( any ( ray_dir == zeroed_float3 ) )
return ;
voxel -= voxel_step * face_mask ;
voxel_step = ( -1 , -1 , -1 ) * ( ( ray_dir > 0 ) - ( ray_dir < 0 ) ) ;
delta_t = fabs ( 1.0f / ray_dir ) ;
intersection_t = delta_t * ( ( hit_pos ) - floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
// REFLECTION
} else if ( voxel_data == 6 && !shadow_ray ) {
voxel_color.xyz += ( float3 ) read_imagef (
texture_atlas,
convert_int2 ( tile_face_position * convert_float2 ( *atlas_dim / *tile_dim ) ) +
convert_int2 ( ( float2 ) ( 3 , 4 ) * convert_float2 ( *atlas_dim / *tile_dim ) )
) . xyz/4 ;
voxel_color.w -= 0.0f ;
float3 hit_pos = convert_float3 ( voxel ) + face_position ;
ray_dir *= sign ;
if ( any ( ray_dir == zeroed_float3 ) )
return ;
voxel -= voxel_step * face_mask ;
voxel_step = ( -1 , -1 , -1 ) * ( ray_dir > 0 ) - ( ray_dir < 0 ) ;
delta_t = fabs ( 1.0f / ray_dir ) ;
intersection_t = delta_t * ( ( hit_pos ) -floor ( hit_pos ) ) * convert_float3 ( voxel_step ) ;
intersection_t += delta_t * -convert_float3 ( isless ( intersection_t, 0 ) ) ;
bounce_count += 1 ;
// SHADOW RAY HIT
} else {
color_accumulator.w = 0.1f ;
break ;
}
}
// At the bottom of the while loop, add one to the distance ticker
distance_traveled++ ;
}
color_accumulator = mix ( fog_color, color_accumulator, 1.0f - max ( fog_distance / 700.0f, 0.0f ) ) ;
write_imagef (
image,
pixel,
color_accumulator
) ;
return ;
}